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Abstract

Computer networks face continual attacks from adversaries that devise innovative ways

to achieve their goals. An adversary often conducts careful reconnaissance and scanning

of the target network to amass actionable information before they launch an attack. IP

addresses are one form of information sought by adversaries. A defensive method that

uses a Moving Target Defense (MTD) to change the perceived IP addresses of hosts on a

network attaches an expiration date to information from the intelligence-gathering phases

of an attack. To counter this, an adversary must act fast and introduce a higher chance of

committing an error, or scan more often which increases their visibility.

Technical challenges with MTD pose obstacles for those who wish to use this technique

on their networks. Software-Defined Networking (SDN) provides network engineers with

a flexible way to determine network behavior, which overcomes some of these technical

challenges. One form of a SDN MTD is Random Host Mutation (RHM), which assigns

hosts a Virtual IP address (vIP) to pair with their Real IP address (rIP). At a given

interval, these rIP:vIP mappings “mutate” and link a different vIP to the same rIP.

RHM is an offshoot of a proof-of-concept implementation in a simulation network from

researchers at the University of North Carolina (UNC). While this research did not include

statistical analysis, research by Aust in 2017 at the Air Force Institute of Technology (AFIT)

confirms the defensive benefits of this technique through experiments on actual hardware

with statistically-significant research. With a proven defensive technique in hand, the im-

pact of RHM on Quality of Service (QoS) for legitimate network users is the next area of

interest for network engineers. This research confirms previous work in the research area

with validation experiments. QoS experiments use a test network similar to the one in past

AFIT research, which supports a simulated adversary and servers for several protocols in

common use. Test scripts generate packet captures of network traffic for later analysis of

legitimate user and adversary actions. Conclusions about the efficacy of RHM on adversary

iv



actions and QoS stem from this data.

Results confirm the defensive benefits of RHM against scanning actions by the com-

parison of total perceived hosts with both quick and intense network scans by a simulated

adversary. T-tests compare scan times and total perceived hosts versus total actual hosts for

quick and intense scans. These tests, done at the 99% confidence level (p <0.01), reveal a

statistically-significant difference in both scan time and number of hosts found. As a result,

Aust’s claims of the defensive benefits of a SDN-based MTD are valid.

Of the seven protocols under test in QoS trials (File Transfer Protocol (FTP), Hypertext

Transfer Protocol (HTTP), Internet Message Access Protocol (IMAP), Post Office Proto-

col (POP), Real-time Transport Protocol (RTP), Simple Mail Transfer Protocol (SMTP),

and Secure Shell (SSH)), FTP does not function in a RHM-enabled network and HTTP

displays anomalous behavior that creates up to 14.2 times as much network traffic during

mutation connections versus control trials. RTP shows an increase in jitter of 128 ms that,

depending upon the requirements of applications using this protocol, may not be accept-

able. IMAP, POP, SMTP, and SSH display some differences from control studies with an

average overhead latency increase of no more than four milliseconds after accounting for

outliers. While RHM introduces a meaningful impact on QoS, the scale of this impact may

be small enough that the defensive benefit justifies the cost on a case-by-case basis. The

results of this thesis serve as a next-step in application of RHM to real-world networks such

as enterprise settings.

v
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QUALITY OF SERVICE IMPACTS OF A MOVING TARGET DEFENSE WITH

SOFTWARE-DEFINED NETWORKING

I. Introduction

This thesis refines a security measure against network scans with a Software-Defined

Networking (SDN) controller and an OpenFlow-capable switch. This chapter gives context

for the research problem of interest and an approach to gather meaningful data. Finally,

this chapter states research goals along with assumptions and limitations for this line of

research.

1.1 Background

Computer networks are a vital part of modern society. Their applications for economic,

personal, and industrial purposes revolutionize several aspects of life. Networked systems

have a similar effect and are a staple of modern life in most nations. Those who wish to inflict

harm on companies, individuals, or nations recognize this new means of attack and develop

exploits to achieve destruction, degradation, or Denial of Service (DoS) of these systems.

The attack surface these systems present results in efforts by security professionals to slow

down or deny adversary actions. Adversaries counter these efforts with new techniques to

get around these defensive measures, which creates a cat-and-mouse game between attacker

and defender.

SDN is an emerging form of network operations for computer networks. In this ar-

chitectural paradigm, the separation of control and data planes allows a central network

intelligence and an abstraction of the underlying infrastructure (e.g., switches or routers) for

applications. The OpenFlow protocol is one instance of SDN that allows for a vast number

of uses on a network. In this configuration, the use of a centralized controller directs the

flow of data across the network in a manner that is difficult or impossible in traditional

1



networking approaches.

Research efforts by the University of North Carolina (UNC), and later on by the Air

Force Institute of Technology (AFIT), examine an implementation of a defensive counter-

measure that uses SDN to thwart adversaries as they conduct the first steps of their attacks.

This technique uses Random Host Mutation (RHM) to shuffle the perception of network

asset locations to impede adversary action with a link between a Real IP address (rIP) and

a Virtual IP address (vIP). Results from these research efforts are promising, but do not

consider the Quality of Service (QoS) implications of this defensive technique.

1.2 Problem Statement

There exists proven value of RHMs as a means of Moving Target Defense (MTD) in

SDN. Unfortunately, this evidence does not consider the network performance impact

on legitimate users; it only examines the challenges adversaries experience. This thesis

attempts to confirm results of the defensive benefits of RHM and provide statistically-sound

information that addresses the QoS implications of this MTD on a network. Tests focus

on a stable network that provides an effective means of defense while enabling experiments

that report the QoS legitimate users experience.

1.3 Goals and Hypothesis

This thesis builds upon previous work in the SDN-enabled MTD topic area by confirm-

ing the benefit of mutations as a MTD and their impact on legitimate users with a test

network running services in common use. The framework used to design these tests fo-

cuses on stability, effectiveness, and the measurement of QoS metrics. The severity of these

QoS impacts is unknown and their assessment is one of the primary motivations for this

thesis. The hypothesis for this thesis is that a RHM-network shows statistically-significant

differences in network scan times and scan accuracy at the cost of a decrease in QoS of an

unknown magnitude as experienced by legitimate users.
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1.4 Approach

A test network of thirty hosts, one SDN-enabled switch, one adversary machine, and

one SDN controller provide the basis for experiments. Experiments measure the duration of

adversary and legitimate actions with internal clocks on the hosts. Adversary measurements

focus on the duration of network scans and number of perceived hosts that result from

network scans. Legitimate user actions create traffic with protocols in common use and

report information about the throughput, reliability, and performance of those connections.

Experiments are run with and without RHMs on the network and record packet captures

for later analysis. Comparison of the data from packet captures indicate if the impact on

adversary or legitimate users is statistically significant.

1.5 Assumption and Limitations

Assumptions and limitations enable proper interpretation of the results and keep exper-

imentation focused on the research goals. This thesis applies the following assumptions:

1. To replicate Aust’s study, the adversary scans from inside the network.

2. All target hosts run Windows XP Service Pack 2 to ensure they are vulnerable to the

adversary.

3. The adversary does not attempt to exploit network infrastructure, nor the servers

that host the protocols under test.

4. Legitimate users know the vIP address of the network assets that support the protocols

under test.

5. Due to identical target hosts, the adversary can exploit a random machine from the

list of scan results instead of the same host every time.

6. While dedicated adversaries can identify hosts based upon Media Access Control

(MAC) addresses, the simulated adversary does not. Some exploits launched through

Metasploit require an IP address and do not function without this information [1].
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Since a rescan of the network must occur to supply the exploit with a current vIP

address of the target host, the system still provides a layer of shifting obfuscation.

Research in this thesis has four main limitations:

1. Identification of hosts may occur via characteristics other than IP address (e.g., open

ports, MAC addresses, Operating System (OS) version).

2. RHMs sacrifice the impact on duration of adversary access after a successful attack

from Aust’s work to ensure broader network usability that maintains connections

across mutations. This trade-off allows for lengthier connections, which overcomes a

limitation of previous research and increases usability of the network.

3. The vIP of a given host is known by the client that attempts to open a connection

to it. In experiments, the tester examines the mutation table on the SDN controller

and supplies the correct vIP to the test script which creates connections between the

client and server. A real-world system must automatically update clients with current

rIP:vIP mappings.

4. Wireshark collects QoS with built-in tools. Other tools to measure QoS may exist

that provide better data.

Chapter VI discusses these limitations in greater detail as areas of future work.

1.6 Thesis Overview

This thesis addresses the defined research area in six chapters. Chapter II defines

Software-Defined Networking, network attack, the concept of a moving target defense,

presents a case study where MTD provides a clear benefit, defines random host muta-

tion as a form of MTD, and reviews previous research efforts. Chapter III details the

framework used in tests and provides a detailed description of how each component fits

together. Chapter IV discusses the experimental process, and the results of experiments

are in Chapter V. Chapter VI summarizes the research, and explains the significance of this

research and future work contribution to the SDN body of knowledge.
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II. Background and Related Research

This chapter discusses the information necessary to understand Random Host Mutation

(RHM) in Software-Defined Networking (SDN). Section 2.1 discusses the key characteristics

and developmental history of SDN. Section 2.2 reviews network attack methodology to

provide context for defensive countermeasures. Section 2.3 covers the topic of Moving

Target Defense (MTD) and how RHM provides this capability; this concept is the basis of

the thesis. Section 2.4 provides an example of how MTD reduces the threat posed by the

Mirai botnet. RHMs are described in detail in Section 2.5. Previous research into MTD

through SDN is reviewed in Section 2.6.

2.1 Software-Defined Networking

As shown in Figure 1, traditional network infrastructure combines the processing logic

for network behavior (control plane) and processing of network traffic (data plane) in each

network appliance (e.g., switches). Management of larger, more complex network topologies

in this way, produce complicated administrative challenges. Software-Defined Networking

separates the control and data planes through the use of SDN-capable devices and a cen-

tralized controller which defines network behavior for the SDN devices. SDN controllers

maintain network state information and interact with control applications and switches via

an Application Programming Interface (API). In effect, this becomes a distributed system

the emphasizes performance, scalability, fault-tolerance, and robustness. Centralized con-

trol allows for easier installation and removal of extra hardware as the logic that determines

behavior is located at the controller and not the device that are installed or removed. In

this configuration, the centrally-located controller uses a secure channel (shown as a green

dotted line) to define switch behavior.
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Figure 1. Separation of Control and Data Planes in Traditional Networks Versus a SDN [2]

2.1.1 SDN Basics.

Four main concepts characterize SDN [2]:

• Plane Separation: The control plane determines data plane actions and establishes

the rules that govern what flow table entries get installed on devices that interact

with the data plane. Data kept in these flow tables define how data plane devices

(e.g., switches) process traffic as it traverses their ingress and egress ports [3]. Data

plane devices forward, drop, consume, or replicate incoming traffic based upon rules

stored in their flow tables. Section 2.1.3 provides examples of these four actions in an

example SDN.

• Simple Devices and Centralized Control : Complex software that determines network

function is stored on the centralized controller, not on switches that handle the data

plane.

• Network Automation and Visualization: SDN simplifies network operations through

abstraction as well as Northbound and Southbound APIs. As shown in Figure 2,

northbound APIs interface with software applications that interact with the controller.

Southbound APIs govern the interface between controllers and network devices. This

concept is similar to how high-level programming languages make programming more
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accessible through layers of abstraction.

• Openness: Software engineering approaches such as agile development have shown

their value in rapid creation of prototypes and a mindset that embraces change. The

flexible nature of SDN enables the development of networks that facilitate research,

experimentation, and vendor interoperability to lower consumer cost and support

rapid innovation. This design goal allows for faster development of and changes to

network behavior.

Figure 2. Northbound and Southbound APIs in a SDN [4]

The SDN controller provides the conduit between the network programmer and the

nuances of network functionality. Controllers manage topologies, flows, discover devices, and

gather locally-stored statistics. The modular nature of the Northbound and Southbound

APIs minimizes differences between SDN devices due to the standardized interface. SDN

devices use the Southbound API to receive updates to their flow tables. The highest priority

match between the packet and a given rule in the flow table dictates how to process network

traffic. The concept of processing network traffic through examination of its characteristics
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is not a novel concept. For example, firewalls have allowed network operators to reject

packets through criteria such as IP addresses and source or destination ports. However, the

generic flow tables and flexible logic in SDN are what make this technology versatile for

packet processing.

2.1.2 SDN versus Traditional networking.

To understand the benefits of SDN, the key differences between SDN and traditional

network management deserve an overview. The Open Networking Foundation notes that

current networking technology without SDN suffers from four main limitations [2]:

• Stasis: Increases in complexity from highly-interconnected control and data plane

hardware present obstacles to ensure stability at scale and inhibit innovation.

• Inconsistent Policies: Uniform adoption of new control plane policies does not always

occur since each control element need individual configuration.

• Poor Scalability : Growing networks require more time from administrators to properly

configure. Automation from SDN due to vendor-independence reduces Operation

Expenses (OPEX).

• Vendor Dependence: Vendor-specific interfaces and configurations create dependencies

on third parties and complicate the role of administrators, especially if hardware from

multiple vendors is in use. Interoperability challenges can lead to vendor lock-in due

to past purchasing decisions.

The separation of control and data plane is not a groundbreaking concept, as mod-

ern switches that do not support SDN still have Application-Specific Integrated Circuits

(ASICs) that communicate with general-purpose Central Processing Units (CPUs) to han-

dle control plane messages or traffic without defined rules [3]. The distinction lies in the

fact that traditional hardware represents these two planes as tightly-woven entities within

the same physical hardware. This in turn led to more complex machines which increase

development costs and contribute to stagnant network technologies.
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The architecture of SDN adapts to large networks due to the separation of control and

data planes. Separation allows the determination of fast routes without taxing the same

hardware that must forward network traffic. Once new optimal routes are calculated by

the controller’s processing logic, the rules that govern the SDN devices propagate from the

controller to the SDN devices. This process is done through a live update to SDN devices

without service interruptions. The global view of a controller also allows for link state

algorithms such as Dijkstra’s algorithm to compute optimal routes. Since SDN uses well-

defined API calls, the limitation of vendor independence becomes less of a factor as SDN-

capable hardware must perform to a standard specification such as OpenFlow. Changes

in network policy conducted at the controller-level propagate out to infrastructure devices.

This overcomes the traditional network limitation of inconsistent policies.

2.1.3 Example SDN Configuration.

This section provides an example of how all the components in a SDN come together to

process network traffic. Figure 3 illustrates a network consisting of one SDN controller and

three SDN switches along with the basic actions that SDN devices can take. The controller

has a global view of the network in its memory and can interface with the switches using

calls across the southbound API to update the flow information kept on each switch through

a communications protocol such as OpenFlow (Section 2.1.5). As switches receive network

data, they perform one of four actions: Forward, drop, consume, or replicate [2]. Forwarded

packets are processed based upon a matching flow in the flow table. Dropped packets can

result from specific filtering. Packets are consumed when they require additional processing

by the control plane. For example, if a packet did not have a matching filter, the data plane

device uses its isolated channel with the controller to send the packet for further processing

[2]. Replication of packets is a special case of forwarding where packets are sent out across

multiple egress ports.
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Figure 3. Demonstration of SDN Actions

Messages that pass between hosts and SDN devices in Figure 3 demonstrate all actions

that a SDN switch can take and an update from the controller in six steps. As a start

condition, SDN Switch 1 has several flows installed on it to process traffic from Hosts 1,

2, and 3. SDN Switch 2 has only one flow which states that it must replicate any traffic

received to all its egress ports. SDN Switch 3 does not have any active flows and must

consume any packets to receive instruction from the controller before it takes any actions.

The six steps taken contain these actions:
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1. Send - Host 1 sends a message to Host 2. This message is representative of any net-

work traffic that a traditional network would handle, such as a Transmission Control

Protocol (TCP) SYN packet or a Hypertext Transfer Protocol (HTTP) GET request.

2. Forward - As the packet reaches SDN Switch 1, the switch examines its flow table

and finds a match based upon the characteristics of the message from Host 1 (e.g.,

source IP address, destination IP address, TCP or User Datagram Protocol (UDP),

destination and source ports). The rule in the flow table says that it must forward

the message to the egress port associated with SDN Switch 2.

3. Replicate - When Host 1’s message reaches SDN Switch 2, it finds an single flow table

entry which replicates a message of the type that Host 1 sent. A replicate rule is a

special type of forward rule so the switch sends Host 1’s message out on all of its

egress ports (i.e., to SDN switches 1 and 2 as well as Host 2). Host 2 receives Host 1’s

message. When the replicated message reaches SDN Switch 1, it drops the message

according to a rule in the switch’s flow table.

4. Consume - When the replicated message reaches SDN Switch 3, it does not find a

matching entry in the flow table. It now consumes this packet and forwards it to the

controller for instruction on how to handle future packets of this type.

5. Update - The controller examines Host 1’s message and determines that it must be

dropped. A rule to drop further packets of this type is installed in the switch’s flow

table.

6. Drop - The packet consumed by SDN Switch 3 is dropped and does not reach Host 3.

With knowledge of desired network behavior and protocol specifics, these core actions

allow network engineers to define the behavior of a SDN. By using actions broken into

their most basic components, SDN switches can be designed with simplicity in mind. This

separation allows network behavior to become a property of the network as defined in the

controller. As network requirements change, the core actions taken by switches do not

change as they adapt to instructions from the controller through modified flow tables.
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2.1.4 Developmental History.

SDN has its beginnings in the 1990s with four different attempts at network control:

Open Signaling, Active Networking, Decentralized Control of ATM Networks (DCAN), and

Network Configuration Protocol (NETCONF). In each case, efforts prioritized ways to

make networks more programmable and scalable. Open Signaling produced the idea of pro-

grammable interfaces similar to the North and Southbound APIs discussed in Section 2.1.1

[4]. APIs for computer networks enable customization of network infrastructure with greater

ease. Active Networking used separate channels for data and control planes [5][6]. The abil-

ity of SDN controllers to update flow tables to influence network behavior drew from this

idea. DCAN separated the control and data planes entirely [6]. This separation technique

later became one of the hallmarks of SDNs. In 2006, NETCONF provided a management

protocol that allowed network devices to expose an API to exchange configuration data al-

though it did not separate control and data planes [6]. This feature enabled the ease-of-use

associated with network management through a SDN controller. Along the developmental

timeline of SDN, predecessors such as DCAN, NETCONF, and Ethane provided elements

that influenced SDN in its current form [6][7]. A direct predecessor to OpenFlow, Ethane

focused on the use of a centralized controller to manage policy and security on a network.

Table 1 lists several SDN controllers and provides a brief description for each.

Table 1. Comparison of Different SDN Controllers [6]

Controller Name Controller Description

NOX Multi-threaded C++ on top of Boost library [8]

POX Single-threaded Python for rapid prototyping

Beacon Multi-threaded Java using OSGi and Spring frameworks [9][10]

Floodlight Multi-threaded Java using Netty framework [11]

MUL Multi-threaded C based on top of libevent and glib [12][13]

Maestro Multi-threaded Java

Ryu Python based using gevent wrapper from libevent [14] [12]
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These research efforts culminated in the creation of a communication protocol called

OpenFlow. In 2007, NOX and POX controllers became publicly-available OpenFlow con-

trollers. Since their release, several other controllers have been released to include: Flood-

light, Ryu, Beacon, Mul, and Maestro [7]. These OpenFlow controllers can implement

services such as Domain Name System (DNS), firewalls, and Intrusion Detection Sys-

tems (IDSs). SDN controllers act as one logical unit so modifications to the network became

easier to make. By comparison, a traditional network infrastructure needed individual con-

figuration of disparate components to achieve the same effect.

2.1.5 OpenFlow Communications Protocol.

SDN only conceptualizes network behavior. To actually implement these concepts re-

quires a specific communications protocol. A prominent communications protocol in use for

SDN is called OpenFlow [15]. This protocol meets the need of researchers to experiment

with new network protocols without risking campus network outages. For ease of access,

OpenFlow adopts the idea that switches and routers contain flow tables used for activities

such as Network Address Translation (NAT), Quality of Service (QoS), statistics collection,

etc. Three characteristics usually comprise a flow: match fields process incoming traffic,

counters collect statistics, and actions define how to handle a packet caught by the match

fields [6]. A flow handles network traffic with predefined network rules (i.e., match: IP

address x, action: forward to port y). McKeown, Parulkar, et al. highlight the use of Open-

Flow on computer networks through six examples that demonstrate the ability to modify

the individual flow tables on these switches and routers [2][5][15]. Under OpenFlow, these

rules apply on a per-rule basis which allows greater granularity for data prioritization, pro-

cessing, and transmission across a network. The OpenFlow protocol API made this manual

process much faster.

2.1.6 Major Users.

SDN is no longer just a novel technology for use by researchers; several large companies

use SDN for aspects of their network management. Google, Verizon Wireless, and Dell
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all use SDN for tasks ranging from isolated product testing to data relocation across data-

centers [16]. Google and IBM recognize the value of SDN and support the Open Networking

Foundation [16]. IBM and Cisco also produce OpenFlow-enabled switches, indicating that

some of the major players in networking hardware wish to capitalize on the developing mar-

ket [17][18]. Visualization efforts are underway by Nicira to decouple network information

from physical switch hardware in a move similar to how VMware shapes virtual machine

management [16]. Each of these major players remain subject to similar security concerns

that any enterprise network would face. In addition to current defensive techniques com-

mon to computer networks, users of SDN can benefit from the addition of a MTD to their

networks.

2.2 Network Attack

Regardless of if a network is configured through traditional means or via SDN, the ac-

tions of an adversary tend to fall into five sequential steps to achieve their objective. In

the case of the Mirai Botnet discussed in Section 2.4, an adversary used poorly-secured

devices to launch a crippling Distributed Denial of Service (DDoS) attack at an oppor-

tune moment. An understanding of how network attacks are conducted is necessary to see

how the flexibility of SDN can enable new defensive techniques that foil adversaries in these

phases. Adversaries typically launch their attacks by following the process described in Fig-

ure 4: reconnaissance, scanning, gaining access, maintaining access, and covering tracks [19].

Figure 4. Five Stages of Network Attack [19]

Reconnaissance and scanning are distinct activities used to gather intelligence about

a target network. Reconnaissance focuses on the acquisition of target information. Ad-

versaries can detect all sorts of target information from a plethora of sources. With this
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information, targeted attempts to gather intelligence about the target network can occur,

often with a higher chance of success. The pervasive nature of the online world has made

it difficult to reduce the attack surface that organizations and individuals present to adver-

saries. Scanning searches for computers and openings in networks for later exploitation by

an adversary. In combination with proper reconnaissance, selective examination of weak-

points across the network attack surface occurs. Critical network components such as servers

and network infrastructure present high-value targets to adversaries. Poor configuration or

use of default settings offers little guarantee to rebuff even script-kiddie attacks.

Having found a target, gaining access through software exploits or social engineering

allows an adversary to act with greater freedom. Any level of access, not just that of

an administrator, has the potential for great harm. At this point, adversaries establish

footholds to fulfill their broader objectives such as data exfiltration. Now that an adversary

has access, creation of other processes or programs that allow them to maintain access with

less effort if their current form of access fails is common. Throughout this entire process,

adversaries attempt to remain stealthy and cover their tracks. IDSs apply a broad range

of strategies to detect malicious activity within a network. Statistical analysis of network

traffic for sudden high levels of traffic that links to network mapping or connections to

strange external locations may indicate malicious activity. As described in Section 2.3, a

moving target defense forces adversaries to increase certain types of network traffic during

the scanning and maintaining access phases.

The addition of countermeasures after a successful attack offers little solace for the vic-

tims, and no single solution resists all attacks by adversaries. A robust strategy must rely

upon a defense-in-depth to complement the weaknesses posed by other means of counter-

measures. The Open Web Application Security Project (OWASP) advocates for layered

security mechanisms to manage risk in a situation where one control could suffice stating,

“Controls, when used in depth, can make severe vulnerabilities extraordinarily difficult to

exploit and this unlikely to occur” [20]. For example, firewalls must be used in tandem with

endpoint anti-virus, network segmentation, and security awareness training for improved

security.
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The centralized nature of the controller presents a high-value target to adversaries and a

single point-of-failure. Therefore, multiple controllers provide redundancy [21]. The inher-

ent flexibility of SDN opens up a spectrum of new defensive measures to protect networks.

MTD with SDN increases the challenges adversaries face when they try to launch an attack.

2.3 Moving Target Defense (MTD)

From the perspective of an adversary, static network configurations make the task of

gaining and maintaining access more tenable. A compromised system with shifting char-

acteristics is harder to successfully exploit than a compromised system with static char-

acteristics. Much like how a randomly zig-zagging target is harder to shoot with a rifle,

an equivalent approach to network defense presents additional challenges to an adversary.

Even if systems on a network are kept “up-to-date,” public vulnerability disclosures occur

regularly and advanced threats may have access to zero-day exploits on supposedly robust

systems. MTD, by definition, seeks to “create, evaluate, and deploy mechanisms which are

diverse, continually shift and change over time to increase complexity and costs for attack-

ers, limit the exposure of vulnerabilities and opportunities for attack, and increase system

resiliency” [22]. Anything that adds chaos to the adversary’s efforts serves as an effective

defensive countermeasure if deemed worth the cost.

Valuable defensive countermeasures must have costs proportional to the cost of the asset

they defend in addition to the operational impact of the countermeasure [23]. Research

discussed in Section 2.6 concluded that MTD is a useful defensive countermeasure from

broad-spectrum attacks [24]. Opportunistic attacks that adversaries launch to establish

access on a network may not have the benefit of honed phishing attempts as compared

to more targeted attacks. In either case, a defensive measure that constantly morphs the

topology an adversary observes constitutes a valuable defense as long as the QoS the end

user experiences does not suffer. Figure 5 illustrates the network equivalent of zig-zagging

that a MTD provides for a network to impede the scanning efforts of an adversary. Scans

that show a printer at IP address 2 would then resolve to a computer after the network

topology has shifted. Thus, to target the printer after a mutation, the adversary must
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conduct another scan to see the current IP address of its target.

Figure 5. Concept of a Moving Target Defense

With respect to networked computers, standard components include MAC addresses,

open ports, active services, and IP addresses. Each of these characteristics uniquely identi-

fies hosts on a network. IP addresses are a prime candidate for MTD as they are commonly

used to make assets visible on a network. In conjunction with IP addresses, ports (Trans-

port Layer) create a unique 4-tuple between a client and server to establish connections.

Media Access Control (MAC) addresses (Data Link Layer) are also used, but protocols such

as TCP and UDP ride above their layer of abstraction. For a corporate network, a MTD

that changes IP addresses is more practical than changing MAC addresses even though it

may not constitute a perfect defense. In a network dealing with sensitive Industrial Con-

trol Systems (ICSs), a MTD that focuses on multiple aspects, such as IPs and/or MAC

addresses may be justified despite an increase configuration cost. The specifics of a network

influence what constitutes a valuable defensive countermeasure.

2.4 Mirai Botnet Case Study

One example of an attack with far-reaching consequences that could have been impeded

by a MTD was the Mirai botnet attack in October of 2016. Botnets are swarms of networked
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computers which leverage their mass to achieve some goal Denial of Service (DoS)) [25].

Technical specifics have evolved over the years, but the result is that botnets are hard to

detect and defend against once created. The Mirai attacks carried out a DDoS against Dyn,

a major DNS provider, by sending approximately 1.1 terabits of malicious traffic per second.

Several attack variants exist to include Generic Routing Encapsulation (GRE), TCP, and

HTTP flooding [26]. The service outages resulting from this botnet caused services such as

Twitter, Netflix, and Facebook to go offline for several hours.

Figure 6 outlines the 7-step attack process for this botnet [26]. First, a bot searches

an addresses range for improperly configured IoT devices and attempts to gain access via

brute force. Upon successful discovery of a vulnerable host, the bot reports this information

to a report server that keeps track of vulnerable devices. A Command and Control (C2)

server then checks for potential victims through the information stored on the report server.

Once the C2 server chooses a group of devices to attack, an infection command with the

requisite details (i.e., IP addresses and hardware configurations) is configured on a loader

which delivers the malicious binary. Once this exploit is installed on the new victim, it can

communicate with the C2 server for further instruction. Finally, the C2 server issues attack

commands to the newly-formed botnet. This command then causes the bots to perform

their DoS.
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Figure 6. Mirai Botnet Attack Overview [26]

In a network using RHMs as a MTD, the Mirai botnet may be able to complete steps 1

and 2 in Figure 6, but when the C2 server initiates step 3 the new bot victim could have a

new IP address and would show up as inactive. Next, the C2 server would skip step 4 and

move on to a new target in its list. Alternatively, the Report server may indicate an active

target in step 3 but a mutation could occur between steps 3 and 4. In either scenario, the

reliability of this attack methodology is no longer guaranteed to work due to RHMs which

cause the intelligence gathered in the reconnaissance phase to have a shortened lifespan.

In the case of the Mirai botnet, DoS attacks were made possible by poorly secured

Internet of Things (IoT) devices and demonstrates the massive attack surface posed by a

line of technology so willingly embraced with general disregard toward security implications

[25]. Many users of IoT devices are unaware or apathetic to security implications that may

cause these devices to be repurposed by adversaries [26]. The anticipated existence of over

100 billion IoT devices by 2025 presents serious security concerns for network operators

[25]. Use of a MTD reduces risk posed to this attack surface by disrupting the ability of an

adversary to reliably discover and exploit vulnerable devices.
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2.5 Random Host Mutation

Having defined the value of a MTD, this section addresses the specifics of how a the-

oretical MTD exists on a computer network. Identification of services is one of the main

parts of the scanning phase of the cyberattack methodology. Much like how company-wide

password policies introduce a level of variability in user credentials, the concept of a shift-

ing field of “cyber terrain” through RHM at the network level challenges attackers to act

within a constrained window of opportunity [27]. Researchers at University of North Car-

olina (UNC) provide several proof-of-concept proposals that inspire the general application

of RHMs [28][29][30]. These research efforts produce systems that are unpredictable, fast,

operationally safe, and transparent.

Figure 7 describes a SDN that supports RHM. This network architecture consists of

SDN switches, a SDN controller, and hosts connected to the switch. For connectivity to

the Internet, standard pieces of infrastructure such as routers may exist. Without a certain

level of interoperability, SDN technology does not easily integrate with the well-established

networking techniques of at a cost-effective level. Each SDN switch contains a flow table that

defines how each particular switch processes network traffic. The flow tables are updated

according to information sent by the SDN controller.
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Figure 7. OpenFlow RHM Architecture [31]

A scanning adversary may find a node and see that it is at IP address a.b.c.d running

services x, y, and z. After a RHM, that same IP address may or may not map to an ac-

tual node on the network. If it does, an entirely different set of services could be running

on a.b.c.d which forces an additional scan to account for inaccurate network information.

Further compounding the complexity for adversaries could be the existence of honeypots

that run the same set of services as a legitimate target. Honeypots are targets designed to

attract adversaries so that defenders can better understand or entrap them [32]. Intention-

ally placing weak targets on a RHM network that appear similar to legitimate hosts require

adversaries to acquire more identifying information about targets (e.g., MAC addresses or

Operating System (OS) Versions) to reacquire them after an IP address mutation.

At its core, the controller to leverages the power of SDN to map the Real IP address (rIP)
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of each host to a Virtual IP address (vIP) in an RHM. If end hosts perform this muta-

tion process, numerous synchronization problems would emerge and inconsistent mutation

calculations done by each host may render themselves isolated from the network. When a

host without a rIP:vIP mapping initiates a connection, the switch examines its flow table

for an existing flow and forwards the packet if one exists. In the event that a flow does not

exist, the controller creates a new flow for the connection and that information propagates

to the switch.

RHM shares similarities with NAT but has a key distinction. While NAT allows multiple

devices to share one Internet-routable address, once an adversary gets beyond a NAT there

is no longer a defensive benefit to a NAT. RHMs allow the use of a similar construct to

add another layer of obfuscation to internal networks which slow down an attacker and

force increased scanning activity. This behavior can make an adversary more visible to an

IDS, especially since SDN flows are designed to facilitate the collection of statistics related

to individual flows. Furthermore, the limited window-of-opportunity constrains adversary

actions and may force careless actions.

Figure 8 provides a sequence diagram of how a host sends network traffic to a host on

a different subnet in a SDN using RHM. First, Host A wants to send a message to the vIP

address of Host B. Additional network management must occur to inform clients of vIPs.

One potential way to share this information with the clients is through DNS cache updates

that occur in sync with mutations (this idea is discussed in Section 6.4). Second, the SDN

switch receives the request and discovers that there is no rule in the flow table to handle

this type of traffic. Third, the switch asks the controller how to handle this request. The

controller determines that traffic coming from Host A’s rIP (10.13.1.5) destined for Host

B’s vIP (10.13.2.42) must have the source/destination headers modified. Host A’s rIP must

be replaced with its vIP (10.13.1.86). The destination of Host B’s vIP then translates to its

rIP (10.13.2.10). After this calculation, the fourth step is to update the flow table entries on

the SDN switch. Fifth, the switch conducts address translation between the rIPs and vIPs

for Hosts A and B. Finally, the switch sends the message to Host B. Note how the SDN

switch sends a request to the SDN controller when predefined behaviors are not present at
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the switch. The network policies set by the network engineers are instantiated as rules at

the controller and transmitted across the Southbound API to the data plane (as described

in Section 2.1.1).

Figure 8. Sequence Diagram for Flow Creation [24]

In the example described in Figure 9, a host attempts to communicate with another host

on a different subnet and the SDN switch already has a defined flow. Now that a flow has

been established between the two hosts, traffic flows freely hosts much like in a traditional

network as long as the flow table is not modified. First, Host A wants to send a message to

the vIP of Host B. Second, the switch checks its flow table for a rule on how to handle this

traffic. There exists a rule on the switch stating that traffic from Host A’s rIP destined for

Host B’s vIP must modify the source/destination headers. Host A’s vIP replaces its rIP

and the switch translates the destination of Host B’s vIP to its rIP much like in Figure 8.

Finally, the Host B receives the message. The difference between this example and the one

in Figure 8 is that a flow already exists on the switch so the controller does not supply the

switch with instructions. If RHMs were used in this example, the rule on the SDN switch

that governs this translation process must update to a different set of translations based

upon source IP addresses.
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Figure 9. Sequence Diagram for an Existing Flow [24]

A variety of specific details may govern RHMs based upon the desires of network engi-

neers. Hosts can mutate in a purely random way, they can be weighted to have mappings

that are not near their current vIP in the address pool, or could mutate based on adversary

actions. The optimal means of calculating the mutation rate is subject to numerous ele-

ments of the network but is beyond the scope of this thesis which measures the performance

impacts of RHMs on legitimate users.

After a certain interval has passed, the mappings between rIPs and vIP change such

that no mapping from the previous mutation table exists in the current mutation table.

If rIP:vIP mappings did not always change with each mutation and the host were already

compromised, an adversary would have even more time to execute attack scripts and create

persistence. Imagine a vIP pool of four with three hosts. In this scenario, host mutations

resemble those illustrated in Figure 10 if a flow table on one of the switches were examined.

Examination of host A in the figure shows it has a vIP of 1 at the start. After the first

mutation, its rIP:vIP mapping becomes A:2. After another mutation host A has a vIP

of 3. This process continues indefinitely with the restriction that each host does not keep

the same vIP across mutations. In this example, it means that host A cannot have a vIP

of 3 after a theoretical third mutation. The specifics of how mutations are handled (i.e.,

frequency, available address ranges) can vary depending upon the level of complexity that
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the network programmers wish to undertake.

Figure 10. rIP:vIP Mutations Example

One possible means of RHM in an OpenFlow network is described in Algorithm 1:

Algorithm 1: OpenFlow Random Host Mutation [31]

Data: Unused address ranges, Range-to-Subnet assignments
Result: Mutation of rIP:vIP mappings

1 Unused ranges
2 Range-to-subnet assignments
3 forall packets p from OF-Switches do
4 if p is a Type-A DNS response for host hi then
5 set DNS address to current vIP(hi), TTL ' 0
6 else if p is a TCP-SYN or UDP from hi to hj then
7 if p.src is internal then
8 install in flow in source OF-Switch with action srcIP(p) := vIP(hi)
9 install out flow in source OF-Switch with action dstIP(p) := rIP(hi)

10 if p.dst is rIP then
11 if hi access to hj is authorized then
12 install in and out flows in destination OF-Switch

13 else p.dst is vIP
14 install in flow in destination OF-Switch with action dstIP(p) := rIP(hj)
15 install out flow in destination OF-Switch with action srcIP(p) := vIP(hj)

16 end

17 forall mutation of each host hi do
18 set vIP(hi) to a new vIP
19 end

20 end

Algorithm 1 allows devices on the same subnet to communicate with each other using

only their rIPs and establishes rIP:vIP mappings. Unused address ranges are determined

to define the vIP address pool which are then assigned to subnets in lines 1 and 2. At this

point, each subnet on the network receives a subset of the vIP address pool for its hosts.

Translation/flow creation then happens as required based upon network traffic. Lines 4 and
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5 show the assignment of a vIP for a packet that contains a DNS response for a particular

host on the network. When information reaches the host, the DNS cache now contains a

link between the Fully Qualified Domain Name (FQDN) and the vIP of the host in question.

The else block that spans lines 6-16 shows how other network traffic could be handled. The

if block from lines 7-9 conducts address translation between two hosts on the mutation

network by changing the IP addresses in the packet through a new flows on the switch. The

if block that starts on line 10 handles a scenario where hosts are allowed to communicate

with the rIP of a host. In this case, address translation does not necessarily occur. Such an

action may be practical for gateways or DNS servers that new devices must contact when

they join a network. The else block starting on line 13 conducts the translation of a packet

bound for a vIP to the rIP of the intended server. This block also changes the source IP

to the vIP of the client. The forall block that starts on line 17 defines what occurs during

a mutation. In a broad sense, each vIP of a host on the network receives a new vIP. The

specifics of this process are an area that can be custom-tailored to the requirements of the

network.

2.6 Previous Work in RHM Topic Area

Much of the spearheading into the application of SDN for MTD and the concept of RHM

stemmed from work by researchers at UNC starting in 2012 [31]. This research provided

mathematical models with which to define RHMs as well as tests in Mininet, a network

simulator. Preliminary results indicated that adversaries were not able to generate as clear

of a picture of a network topology compared to a static network due to shifting rIP:vIP

mappings. With a proof-of-concept established, this idea was further refined by a previous

research project from Air Force Institute of Technology (AFIT) [24].

To build upon the work done by the team at UNC, a study to test the concept on

enterprise-quality hardware instead of a simulated environment was conducted by Aust at

AFIT [24]. Aust refers to this work as Proactive Host Mutation (PHM). The study showed

that an adversary in a “PHM network is significantly worse at finding and maintaining

connections to hosts” [24]. T-tests conducted with a 90% confidence level showed differences
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in network scan performance with p-values equal to or less than 0.1. The results supported

Aust’s hypothesis that PHM made scans by an adversary less effective [24]. Aust also

noted the impact that PHM has on legitimate users as an area of future work stating,

“given that servers host critical network functionality and data, they are highly valuable

targets for attackers. The limitation seen in this research is that some network functions

require lengthy connections, such as File Transfer Protocol (FTP). If these connections were

interrupted by the mutation, it would interfere with user connectivity, which is unacceptable

in most enterprise networks. An addition to PHM to allow for extended connections, without

allowing for a new attack vector would significantly improve the functionality of PHM” [24].

The code that calculates PHMs does not update the rIP:vIP mapping for connections after

a mutation occurs. As a result, network assets are no longer at the location in use by a

client in an active connection. This design flaw requires a solution before a SDN-enabled

MTD can see use in real-world networks. This thesis creates a version of Aust’s work, RHM,

that overcomes this critical issue. The limitation of interrupted connections drives the main

focus of this thesis to assess the QoS impact that mutations have for a SDN-enabled MTD.

SDN has also been applied to ICSs by Jason Dearien from Schweitzer Engineering

Laboratories. In a 2017 presentation, he described the use of Operational Technology

SDN (OTSDN) to meet the strict requirements for ICSs. This line of research leveraged the

“unprecedented network diagnostic visibility and ability to visualize packet flow...” [33].

Traditional networking is subject to topology-dependent performance and it is difficult to

achieve 100% test coverage. Completely predefined network behavior is impractical for net-

works that exist in a normal IT environment. In a high-reliability network, performance,

security, and resiliency are critical characteristics. In SDNs, reactive flows are used to

respond and adapt to traffic since loads are variable and devices may join and leave the

network often. The research conducted into OTSDN used static flows to define network

performance with greater certainty and reliance on a known network configuration [33]. The

OTSDN research showcased the flexibility of SDN for specific organizational requirements

and to provide a better network service when compared to traditional networking strategies.
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2.7 Chapter Summary

SDN is an emerging technology that stands poised to redefine large-scale network man-

agement. The decoupling of control and data planes solves many problems faced in current

networks (stasis, inconsistent policies, poor scalability, vendor dependence). Several major

companies (Google, Verizon, IBM, et al.) recognize the power of this paradigm shift for

network operations. If a network is SDN-enabled or not, it remains subject to attack from

adversaries. Adversaries must scan the network to identify targets and potential weaknesses

that can be exploited through the network topology. A defensive countermeasure to this is

MTD, which can take many forms.

One form of MTD is RHM, which creates a mapping between rIP and vIP addresses in

the network and mutates the mappings over time. The specifics of mutation frequency may

vary, but at its core, this defensive strategy increases the challenge for adversaries to scan

a network based upon work by researchers at UNC in simulators and by an AFIT project

on enterprise-quality hardware in a more realistic validation of that work. The remainder

of this thesis analyzes the performance implications of SDN and the effectiveness of RHM

as a MTD in network configurations that are indicative of a small enterprise.

28



III. Framework Design

3.1 Overview

Protocols commonly used on computer networks are either elastic and can adapt to

service-interruptions, or inelastic and cannot. Elastic protocols include Hypertext Transfer

Protocol (HTTP), Post Office Protocol (POP), Simple Mail Transfer Protocol (SMTP), and

Secure Shell (SSH). Inelastic protocols include Domain Name System (DNS), Voice over

IP (VoIP), and Real-time Transport Protocol (RTP). The business case for Random Host

Mutations (RHMs) must also account for any performance impacts on legitimate users. For

example, if RHMs negatively impacts the throughput of a critical service it may not be

appropriate for that network and its specific needs. Conversely, if the candidate network

consists of devices that are difficult to upgrade (i.e., legacy systems) that do not suffer a

performance hit, then RHM may prove a worthwhile addition to the network architecture.

Tests of elastic and inelastic protocols in addition to their impact on an adversary inform

network engineers about how this defensive technique influences normal operations.

3.2 Design Goals

Experiments are conducted using virtual machines to imitate activities of legitimate

users, attackers, and Software-Defined Networking (SDN) controllers. A SDN switch is

considered part of the network design. Three goals drive the development of the test

network:

1. Stability

(a) All hosts are reachable from inside their own subnets.

(b) All hosts maintain network access as indicated by successful ICMP pings and

DNS requests.

(c) The adversary machine can exploit any given machine on the test network.
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2. Effectiveness

(a) RHMs reduce the adversary’s ability to discover hosts.

(b) The adversary cannot reach the Hosts through their Real IP address (rIP), only

through their Virtual IP address (vIP).

3. Quality of Service (QoS)

(a) The framework in Section 3.5 allows for isolated assessment of various protocols

without interference from other confounding factors. For example, test for a

single protocol minimize all other network traffic. This enables conclusions about

performance to focus strictly on the SDN configuration and the protocol under

test. Protocols under test include: File Transfer Protocol (FTP), HTTP, Internet

Message Access Protocol (IMAP), POP, RTP, SMTP, and RTP.

(b) All network assets (i.e., hosts, routers, and switches) have the ability to generate

detailed logs of network traffic. This can be through Wireshark or some other

traffic monitoring software.

(c) The framework provides a controlled, static environment between trials to pro-

duce verifiable conclusions about QoS.

3.3 Network Design

The network under test consists of two subnets. Tests with and without RHMs on the

network provide data for later analysis. The topology is shown in Section 3.3. Five virtual

servers running services that use the protocols under test and 23 virtual Windows XP hosts

are on PlebeNet1. A simulated adversary running Kali Linux is also present. This subnet

allows validation of Aust’s experiments. QoS trials also occur under this configuration. A

single pfsense firewall/router, with a Network Interface Card (NIC) for PlebeNet1 and a

separate NIC for connectivity to the Internet, acts as the gateway for the network. The

network services and XP hosts are all kept on separate port groups. Each port group has a

separate RJ45 port in use on the ESXi hosts. This configuration forces servers and hosts on
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the network to send messages through the Pica8 switch if they wish to communicate with

hosts outside of their port group on the ESXi host. The SDN controller communicates with

the Pica8 switch on a separate channel from the rest of the network traffic (control plane).

The wiring diagram shown in Appendix E details the connections between ESXi hosts and

the Pica8 switch.

Figure 11. Network Diagram for Experiments

3.4 Network Assets

3.4.1 Legitimate Users.

Legitimate users are hosts that generate traffic used to evaluate the protocols under

test. Clients, servers, and a firewall are present on the network. Clients and servers exist

on separate physical NICs, otherwise the ESXi hypervisor would process network traffic
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internally and it would not reach the Pica8 switch running mutations. The adversary

machine can exploit the clients, which are the only network assets targeted in validation

experiments since Aust did not attack other components of the network. The client and

server ends of any given connection measure QoS metrics. Hosts are unaware of whether or

not RHMs are active on a network. In order to access network services, the host knows the

current vIP of the desired service for a given mutation. In real-world applications, the clients

may receive Address Resolution Protocol (ARP) or DNS cache updates in lockstep with

mutation updates to eliminate this assumption. More details about this idea are available

in Section 6.4.

While Aust’s trials have different numbers of active hosts, the validation of those results

as part of this experiment focus on the trials done with 30 active hosts to provide more

time for QoS tests. Aust’s results indicate a consistent difference of at least five hosts in

the discovered amount of hosts and total number of active hosts at this treatment level

[24]. The main focus of this experiment is on the QoS for connections between clients and

servers. A decrease in adversary effectiveness with shorter mutation windows must occur

for successful validation of Aust’s work.

Virtual machines running Windows Server 2012, Ubuntu 14.04 LTS, and Windows XP

represent legitimate users. Additionally, a pfsense firewall is active on the network. Sec-

tion 3.4.3.2 lists system specifications.

3.4.1.1 Windows XP.

Virtual machines running XP represent users of the network. They open connections

with the servers to send messages that use the seven protocols under test. XP is chosen

since reliable exploits (e.g., MS08 067) are readily available in Metasploit. This research

focuses on how RHMs impede the actions of an Adversary, not the resistance of targets.

3.4.1.2 Windows Server 2012.

Win2k12 virtual machines provide a domain controller, web, email, and FTP server each

compartmentalized to separate virtual machines. The domain controller which provides

32



DNS services to PlebeNet1 is an instance of Win2k12.

3.4.1.3 Ubuntu 14.04 LTS.

The server which receives SSH and RTP communications from the client uses this

Operating System (OS). A client to generate traffic for QoS trials also uses this OS.

3.4.1.4 Pfsense Firewall/Router.

Pfsense is a firewall and router that also features unified threat management, load

balancing, and multi Wide-Area Network (WAN).

3.4.2 Adversary.

The adversary serves to validate the results from Aust’s thesis. This machine scans and

attempts to exploit discovered clients from a separate physical NIC so that its traffic must

traverse the Pica8 switch. As with the hosts, the adversary machine maintains detailed

logs about perceived network traffic. The adversary machine runs Kali Linux (v2017.2)

and uses current network scanning and attack tools such as Wireshark and Metasploit.

Section 3.4.3.2 lists system specifications.

3.4.2.1 Kali Linux.

This operating system is a penetration testing platform in common use [34]. Featuring

several toolkits and frameworks for network attack, it is used to launch scans and exploits

against targets on the testbed network.

3.4.3 SDN Devices.

3.4.3.1 Ryu Controller (version 4.10).

Running on an Ubuntu 14.04 LTS virtual machine, the controller calculates RHMs

and defines switch behavior through updates to the switch’s flow table. Flow table updates

happen on an out-of-band channel imperceptible to the adversary and hosts. If the switch is
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unsure of how to process a packet, the switch sends it to the controller which determines how

to process the packet (i.e., forward, drop, consume, and replicate). Section 2.1.3 contains

more details about flow behavior. As with Aust’s experiments, the controller uses a Ryu

controller. In this experiment, network traffic to test RHMs and exploit hosts occurs on

an isolated bridge defined on the SDN switch. The out of band channel in this experiment

is an Ethernet port kept separate from the test network bridge. The adversary does not

target the out of band channel or the controller. Section 3.4.3.2 lists system specification.

3.4.3.2 Pica8 P-3290 Switch.

The SDN switch directs all traffic generated by adversary and hosts according to flow

table entries that the SDN controller creates. In the event that a flow does not exist for a

received packet, the switch consumes the packet and allows the controller to take further

action. After a time specified by the controller (four minutes, in this experiment), flows

timeout and disappear from the flow table [2]. The four minute expiration exists since QoS

trials are done with a 30 second mutation interval and none of the connections in these trials

last longer than four minutes in an attempt to keep packet captures to a manageable size for

aggregate processing. In this experiment the switch used is a Pica8 P-3290 switch running

PicOS v2.6.32.69 with OpenvSwitch v2.3.0 and has 1 µs latency with 64 byte frames. The

switch fabric capacity is 176 Gigabits per second (Gbps). The adversary does not target

the switch. Section 3.4.3.2 lists system specification.
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Table 2. Overview of System Specification for PlebeNet1

OS Central Processing Unit (CPU) Memory Hard Drive

Windows XP 1 Virtual CPU (vCPU) 1 Gigabyte (GB) 20 GB

Windows Server 2012 2 vCPU 2 GB 90 GB

Ubuntu 14.04 LTS 1 vCPU 1 GB 16 GB

Pfsense Firewall/Router 8 vCPU 4 GB 64 GB

Kali Linux 2 vCPU 2 GB 50 GB

Ryu Controller 4 vCPU 4 GB 16 GB

Pica8 P-3290 Switch MPC8541 / Firebolt-3 512 Megabyte (MB) 2 GB

3.5 Test Framework

To validate Aust’s work, the following sequence determines the effectiveness of RHMs at

disrupting adversary scanning and exploitation actions. Each trial starts without influence

from flows that may have been created in a previous trial. The procedures initially described

by Aust influences the steps taken to execute validation trials.

1. Delete any preexisting flows on the SDN switch

2. Establish connection between controller and switch with the specified mutation inter-

val.

3. Assign each rIP a vIP.

4. Initiate a network scan of the PlebeNet1 subnet with Nmap [35].

5. Attempt to exploit a machine discovered during the scan.

6. Send traffic between the adversary and exploited hosts such that a RHM occurs during

transmission.

Given the goals from Section 3.2, the following sequence assesses the QoS impact of

RHM. As with the previous list, each trial is independent from each other. Semi-automated
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scripts allow the client and server machines to generate and record network traffic for later

analysis.

1. Delete any preexisting flows on the SDN switch

2. Establish connection between controller and switch with a 30 second mutation interval.

A 30-second interval was used by Aust and shown to reduce adversary effectiveness.

This interval also enables faster trials which allow the tester to create more data to

support statistical conclusions.

3. Assign all rIPs a vIP.

4. Begin packet captures on client and server machines.

5. Initiate a connection with one of the protocols under test.

6. Create flow between rIPs and vIPs, then mutate mappings at a given interval.

7. Send network traffic between hosts, such that an RHM occurs during transmission.

In the case of baseline data without RHMs active, the mutator script is inactive during

the control experiments; the network functions as one would expect in a network that does

not use Moving Target Defense (MTD). Network traffic using FTP, HTTP, IMAP, POP,

RTP, SMTP, and SSH is then sent over the network and QoS metrics (latency, Round

Trip Time (RTT), jitter, throughput, and dropped packets) are measured. In the instances

where the mutator script is active, simulated network traffic is exposed to RHMs to see how

the mutator script and protocols under test react to new rIP:vIP mappings. Ideal results

would indicate no change in performance and remain transparent to the hosts. Figure 12

describes this measurement process. Wireshark to assess the performance of protocols under

test from the client and server.
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Figure 12. QoS Measurement Concept

3.6 Design Summary

This chapter describes how a test network is designed to be stable, effective, and facilitate

the analysis of QoS metrics. The RHM framework validates work done by Aust while

also collecting data on how various protocols react to mutations. Section 3.5 describes a

framework for data collection on a network designed to approximate network traffic that

exists in a small enterprise setting.
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IV. Research Methodology

4.1 Problem Statement

Random Host Mutations (RHMs) are a proven-effective means to interfere with scanning

activity of an adversary. This chapter outlines experiments to verify RHMs as a means

of disrupting adversary action in addition to examining the impact this framework has

on legitimate users. The assessment of seven protocols quantifies the impact of RHMs.

Section 4.1 shows the hypotheses under test for the validation experiments. Each hypothesis

expects no statistically-significantly difference between a normal network and one that uses

RHMs. The alternative hypotheses state that a difference does exist, but does not predict

whether or not a RHM network performs better or worse than a standard one.

The hypotheses for scan time and hosts found have a null hypothesis which states

there does not exist a difference between control and mutator experiments. The alternative

hypotheses for these two metrics state that a difference does exist between scan time and

hosts found for control and mutator experiments.

HO1 : ScanC − ScanM = 0, HA1 : ScanC − ScanM 6= 0 (1)

HO2 : HostsC −HostsM = 0, HA2 : HostsC −HostsM 6= 0 (2)

For the Transmission Control Protocol (TCP) protocols, latency and Round Trip Time

(RTT) are two unique metrics under test. The null hypotheses for these metrics claim that

there is not a difference in latency or RTT as experienced by the server between control

and mutator experiments. The alternative hypotheses for these two metrics assert that a

difference does exist between latency and RTT in control and mutator experiments.

HO3 : LatencyC − LatencyM = 0, HA3 : LatencyC − LatencyM 6= 0 (3)

HO4 : RTTC −RTTM = 0, HA4 : RTTC −RTTM 6= 0 (4)

For the User Datagram Protocol (UDP) protocol (i.e., Real-time Transport Proto-

col (RTP)), jitter is a unique metric under test. The null hypothesis for this metric asserts

that no difference in jitter exists between control and mutator experiments. The alterna-
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tive hypothesis claims that a difference in jitter does exist between control and mutator

experiments.

HO5 : JitterC − JitterM = 0, HA5 : JitterC − JitterM 6= 0 (5)

For all protocols (TCP and UDP), throughput and packet drop rate are measured.

The null hypotheses for these metrics state that there is not a difference in either metric

between control and mutator experiments. The alternative hypotheses claim that there is

a difference in throughput and packet drop rate.

HO6 : ThroughputC − ThroughputM = 0, HA6 : ThroughputC − ThroughputM 6= 0 (6)

HO7 : PktDropC − PktDropM = 0, HA7 : PktDropC − PktDropM 6= 0 (7)

4.2 Experimental Design

Figure 13 illustrates the design of the system under test. The figure lists factors, pa-

rameters, and metrics involved with the experiment.

Figure 13. System Under Test Diagram for RHM Framework
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4.2.1 Metrics.

This experiment aims to validate the results by Aust and measure the Quality of Ser-

vice (QoS) impact of RHM. Therefore, trials measure the original metrics of scan time

and number of hosts found. Trials do not measure the exploit length metric tested by

Aust. Since RHMs require a means to continue connections across mutations for the sake

of greater usability, that ability was sacrificed in lieu of usability. As a result, a connection

associated with an active exploit cannot be differentiated without additional work to ex-

amine characteristics of that connection. Objective measures of latency, RTT, jitter, and

dropped packets determine the QoS for each protocol. Any measurements of time rely upon

system clocks determined by the operating system. The following list provides a detailed

description of each response variable used as a metric. Table 3 offers a summary of the five

QoS metrics gathered in experiments. Appendix A contains the results for scan time and

found hosts from Aust’s experiments for reference [24].

1. Scan Time: This measures, in seconds, the amount of time it takes for an attacker to

scan the network and find all hosts.

2. Number of Hosts Found : This measures the number of hosts that Nmap is able to

successful find during a scan.

3. Jitter : RFC 4689 defines jitter as “the absolute value of the difference between the

forwarding delay of two consecutive received packets belonging to the same stream”

[36]. Jitter is measured in milliseconds. Generally, the maximum amount of jitter for

acceptable service is 50 ms [37].

4. Latency : Latency refers to the amount of time, in milliseconds, it takes information

to reach its destination [38]. There are four key causes of latency: propagation delay,

serialization, data protocols, and routing and switching overhead [39]. Since the net-

work configuration remains static aside from the presence of RHMs, the only source

of latency that needs to be accounted for is associated with routing and switching.

5. Round-trip Time: RTT is “the elapsed time for transit of a signal over a closed circuit”
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[40]. This metric influences throughput of telephony and ACK-based systems such as

TCP.

6. Throughput : Throughput refers to the amount of data a system can process in a given

amount of time. In the case of network communications, it refers to the amount of

information crossing the channel at a set interval (e.g., Megabits per second (Mbps))

7. Dropped Packets: Dropped packets (or packet loss) refers to information never reach-

ing its destination. Internet Control Message Protocol (ICMP) pings can diagnose

loss-rates of packets sent and received. This method has limitations in production

environments where the network cannot be fully controlled since loss rates are not

always constant [41]. A controlled environment allows later analysis to ignore this

limitation since experiments are conducted in a controlled environment where the

same network traffic is sent in each trial. For inelastic connections, a drop rate of

0-5% is viewed as acceptable [42].
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Table 3. Metrics

Metric Normal Oper-
ating Level and
Range

Measurement Preci-
sion, Accuracy

Relationship of
Metric to Ob-
jective

Scan Time Depends upon number of
live hosts

1-sec steps, measured on attacker’s
clock

Shows any increase RHMs
add to network scan time

Number
of Hosts
Found

Number of Live Hosts Counted, not measured Shows accuracy of network
scans

Jitter Normal: 0-50 milliseconds,
Range: 0-Infinite millisec-
onds

5-millisecond steps, measured on
Wireshark .pcapng file

Measures service quality of
transmission

Latency 0-4000 milliseconds (de-
fault timeout for ’ping’
command)

10-millisecond steps, measured on
XP host’s system clock

Describes efficiency of net-
work configuration (i.e.,
with or without active mu-
tations)

RTT Normal: 0-50 milliseconds,
Range: 0-Infinite millisec-
onds

5-millisecond steps, measured on
Wireshark .pcapng file

Measures service quality of
transmission

Throughput Normal: Protocol depen-
dent, Range: 0-Infinite bps

0.1 bps steps, measured on Wire-
shark .pcapng file

Measures service quality of
transmission

Dropped
Packets

Normal: 0-5%, Range: 0-
100%

Percentage of packets lost with re-
spect to packets sent, measured on
Wireshark .pcap file

Describes reliability of
transmissions
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4.2.2 Factors, Parameters, and Range.

4.2.2.1 Factors.

A controlled environment that emulates a production environment supports the gather-

ing of test data. Experiments modify three factors for the sake of simplicity. The network

configuration (i.e., number of active hosts) does not change over the course of experiments

which assess the impact of RHM. Table 5 summarizes factors used in experiments.

1. Mutation Time: This is the amount of time in minutes that a specific Real IP

address (rIP):Virtual IP address (vIP) mapping remains active. At the end of this

time period, hosts receive a new rIP:vIP mapping. This categorical variable remains

unchanged across all rounds of testing with four possible values (0.5, 1, 5, 15). This

variable does not require monitoring as it does not change once an experiment begins.

2. Nmap Configuration: This refers to the active options used during an Nmap scan.

Scan types are held constant during a test. Therefore, it is a categorical variable.

Two scans are be used, Intense and Quick. Their options are presented below:

Intense scan:

db nmap -min-hostgroup 96 -T4 -A -v -n 10.13.1.0/24

db nmap = The command to run Namp

-min-hostgroup 96 = Sets the parallel host scan group size to 96

-T4 = Sets timing to 4

-A = Enable OS detection, version detection, script scanning, and traceroute

-v = Tell Nmap to be verbose

-n = Never do Domain Name System (DNS) resolution/Always resolve [default:

sometimes]

10.13.1.0/24 = The IP Address ranges to conduct the scan in
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Quick scan:

db nmap -min-hostgroup 96 -T4 -n -F 10.13.1.0/24

db nmap = The command to run Namp

-min-hostgroup 96 = Sets the parallel host scan group size to 96

-T4 = Sets timing to 4

-n = Never do DNS resolution/Always resolve [default: sometimes]

-F = Fast mode (Scans fewer ports than the default scan)

10.13.1.0/24 = The IP Address ranges to conduct the scan in

3. Metasploit Configuration: Similar to the Nmap configuration, this value repre-

sents the specific Metasploit settings used to compromise a host. In each round of

tests the value is remains constant, making this a categorical variable. Only one factor

of SMB exploit is used as the configuration parameter. This value does not change as

measurements are taken to ensure Metasploit is working correctly before attempted

exploits.
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Table 5. Factor Summary

Factor Normal Operating
Level and Range

Settings Predicted Effects

Mutation
Time

0-15 minutes 0.5, 1, 5, and 15 Lower values reduce the time an at-
tacker has to access an exploited ma-
chine.

Nmap config-
uration

N/A Intense and Quick Difference in time for scan comple-
tion time. Possible decrease in host
discovery.

Metasploit
Configura-
tion

N/A SMB Difference in time to exploit machine
and maintain access.

4.2.2.2 Parameters.

Two items remain constant in the experiment: The Software-Defined Networking (SDN)

switch and servers running virtual machines.

1. SDN Switch: One Pica8 P-3290 switch running OpenFlow 1.3 and controlled by a

SDN controller (Ryu version 4.10).

2. Servers: Two SuperMicro SuperServers 8027R-TRF+ with Xeon E5-4600 v2 pro-

cessors, eight 1000BASE-T Network Interface Cards (NICs), 12 cores, 1000Gigabyte

(GB) of Random Access Memory (RAM), running ESXi hosts the SDN controller and

all hosts.

4.2.3 Determining Sample Size.

Pilot study data from Aust gathered results for quick and intense scanning configurations

of five hosts with and without a 30-second mutation interval. The pilot study consisted of

30 repetitions to enable assumptions of normality. In the control network, all 5 hosts were

enumerated but only an average of 2.6 were found in the network with active mutations

[24]. T-tests conducted by Aust revealed a difference between networks that was not due to

chance with a p-value of 2.028e-12. Based upon those results, Aust calculated a minimum
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sample size for trials with 5, 10, 20, 30, 40, and 50 hosts with the formula:

n ≥ (
z · σ
MoE

)2 (8)

The result of Aust’s calculations showed that five samples or more were required to

report the mean within a five-second Margin of Error (MoE) with 95% confidence [24].

Review of Aust’s pilot study data shows a sample size of 9 or larger is required to

achieve results with a margin-of-error of 2.25 seconds. This ensures results that offer a

smaller margin-of-error than Aust’s initial data. A z-value of 1.96 which corresponds to

a 95% confidence level determines the minimum sample size for these experiments. The

largest standard deviation from Aust’s pilot study (3.362 seconds for intense scan time in a

control network) was also used along with a 2.25 second MoE [24]. With this information,

Equation (9) produces a minimum sample size of 8.577.

n ≥ (
1.96 · 3.362

2.25
)2 (9)

This rounds up to a minimum sample size of 9. For additional data to support the results,

experiments to support validation analysis shall consist of 10 trials when analyzing the

impact of mutations on adversary actions.

For QoS data, no changes happen to the system under test aside from whether or not

mutations are active. Since the computer hardware is deterministic based upon the set

of instructions given to it, the same inputs yield the same outputs. Variation in the time

required for certain tasks may be accounted for by human involvement with the semi-

automated trials and small differences in how traffic is routed between hosts. This implies

a data distribution that is approximately normal clustered around the mean time taken by

the hardware to perform the same set of actions in each trial. The Central Limit Theorem

guides the determination of sample size for QoS data to be 30 trials [43]. Appendix B

contains the results from each trial and displays histograms for each protocol under test,

which describe the overall distribution of the trial data.
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4.2.4 Experimental Process.

This section details the specific steps taken to collect test data. One of the assumptions

for these trials states that the client knows the vIP address of the host it wishes to open a

connection with. The script files are located in Appendix C for further details. Trials use

bridge br1 on the SDN switch. This bridge consists of physical ports 10-15 on the Pica8

switch. In all cases, two actions are taken at the start and end of each trial. At the start,

the SDN controller initializes in verbose mode with the following command:

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

params.conf defines the subnet ranges for mutation and the mutation interval. Arguments

are stored in the OpenStack Oslo Config format [44].

At the end of each trial, the flows installed on the switch are deleted with the following

command:

ovs-ofctl del-flows br1

For further debugging information, installed flows and traffic received by the switch may

be displayed with the following commands, respectively:

ovs-ofctl dump-flows br1

ovs-ofctl snoop br1

4.2.4.1 Validation Study.

The validation study performs the scanning and exploitation activities used in Aust’s

research. Scanning of PlebeNet1 is done with either quick or intense options. Section 4.2.2.1

lists specific options available in trials. This phase occurs before an adversary attempts to

exploit one of the machines revealed in the scan. Once a target is found, an exploit (e.g.,

MS08 067) is launched against it. If a scan persists beyond the amount of time required

for two mutations to occur, it shall be manually terminated and recorded as 0 seconds.

Any results from a scan that took longer than two mutations are out of date and therefore

useless to an adversary.

Validation trials consist of a 9-step process and issue commands to the adversary, con-
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troller, and switch. Target hosts are turned on before the trial begins. The sequence of

events is as follows. Commands 1-5 occur before the mutator starts as they do not generate

network traffic. The only requirement for this sequence of commands is that steps 7 and 8

occur while the mutator is active.

1. From the adversary’s root prompt, start the PostgreSQL database. This is the scan-

ning prompt.

service postgresql start

2. In a separate root prompt on the adversary, start the PostgreSQL database. This is

the exploit prompt.

service postgresql start

3. Initialize the Metasploit framework database in both prompts.

msfdb init

4. Start Metasploit in both prompts.

msfconsole

5. From both prompts on the adversary, ensure connectivity to the Metasploit database

for each prompt.

db status

6. From the controller’s root prompt, initialize the mutator in verbose mode. Wait until

the controller displays the list of rIPvIP mappings. These are the mappings for the

current mutation interval.

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

7. From the scanning prompt, launch the scanning script (Quick or Intense).

resource [quickPN1.rc/intensePN1.rc]
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8. Wait until scan completion. Then, from the exploit prompt, launch the exploit script

against a target found in the scan if one exists. Otherwise, note that the scan did not

find any targets.

resource exploit.rc

9. Wait for the exploit to succeed or fail. From the switch’s root prompt, delete any

flows stored in the flow table.

ovs-ofctl del-flows br1

4.2.4.2 HTTP.

A 50 MB file is stored on the Hypertext Transfer Protocol (HTTP) server for retrieval

by the client. To reduce the size of the packet capture file for later analysis but still have

a connection that persists across multiple mutations, the transfer speed is limited by the

–limit-rate option. Upon completion of the transfer (or a broken connection), the Secure

Hash Algorithm 1 (SHA-1) hash of data transferred to the server is compared to the SHA-1

hash of the file on the HTTP server to verify successful transmission. QoS trials for HTTP

consist of a 6-step process and issue commands to the client, server, controller, and switch.

The sequence of events is as follows.

1. From the controller’s root prompt, initialize the mutator in verbose mode. Wait until

the controller displays the list of rIPvIP mappings. These are the mappings for the

current mutation interval.

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

2. Start Wireshark on HTTP server.

3. Start Wireshark on client.

4. From the client’s command prompt, initiate HTTP from the client traffic with curl

[45].

curl -O 10.13.1.[ip]/Data50.txt --limit-rate 1k
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5. After the transfer, stop calculate SHA-1 sum of transferred data from the server on

the client’s command prompt.

sha1sum Data50.txt > HTTP [M/C] [Trial#]

6. From the switch’s root prompt, delete the flows created during the trial.

ovs-ofctl del-flows br1

4.2.4.3 SSH.

To test Secure Shell (SSH) a client opens a connection to a server and periodically sends

commands at an interval that lasts longer than the mutation window to simulate a human

interaction with the command prompt. Output of the SSH session is monitored for broken

connections. QoS trials for SSH consist of a 6-step process and issue commands to the

client, server, controller, and switch. The sequence of events is as follows.

1. From the controller’s root prompt, initialize the mutator in verbose mode. Wait until

the controller displays the list of rIPvIP mappings. These are the mappings for the

current mutation interval.

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

2. Start Wireshark on SSH server.

3. Start Wireshark on client.

4. Open a SSH connection to server from client. Supply password when prompted.

ssh root@10.13.1.[ip]

5. Activate SSH script stored on the server from the client.

~/Send ssh.sh

6. Wait for the script to terminate. From the switch’s root prompt, delete the flows

created during the trial.

ovs-ofctl del-flows br1
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4.2.4.4 RTP.

RTP is tested through the client opening a connection to the server and sending a

message at 1-second intervals for a duration that lasts longer than the mutation window

with rtpgen [46]. Output of the RTP session is monitored via Wireshark and the rtpdump

utility to measure QoS information [47]. QoS trials for RTP consist of a 7-step process and

issue commands to the client, server, controller, and switch. The sequence of events is as

follows.

1. From the controller’s root prompt, initialize the mutator in verbose mode. Wait until

the controller displays the list of rIPvIP mappings. These are the mappings for the

current mutation interval.

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

2. Start Wireshark on server.

3. Start Wireshark on client.

4. Start a RTP listener on server [47].

./rtpdump 10.13.1.6/9000

5. Send RTP traffic from the client with rtpgen [46].

./rtpgen -a 10.13.1.6 -p 9000 -c message.txt

6. After the client transmits for more than at least two mutations, stop the transmission

by the client.

Ctrl + C

7. From the switch’s root prompt, delete the flows created during the trial.

ovs-ofctl del-flows br1
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4.2.4.5 POP.

A Powershell script executed through PowerCLI automatically starts Wireshark captures

and sends Post Office Protocol (POP) data. Two scripts are activated in sequence to

generate POP traffic. QoS trials for POP consist of a 7-step process and issue commands

to the client, server, controller, and switch. The sequence of events is as follows.

1. From PowerCLI, log on to the vCenter server. Supply credentials when prompted.

Connect-VIServer 10.1.0.85

2. Navigate to the directory holding powershell scripts (for example, C:\Users\smayer.

CDN\Documents\GitHub\Mayer_Thesis\Powershell_Scripts)

3. From the controller’s root prompt, initialize the mutator in verbose mode. Wait until

the controller displays the list of rIPvIP mappings. These are the mappings for the

current mutation interval.

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

4. From PowerCLI, start transmission script on client.

.\Capture Mutation Kali.ps1 -Duration 120 -Trials 10 -Interface "eth0" -SVC Name

"Aust Kali" -Protocol "POP" -C:[$True/$False]

5. When prompted, enter the vIP of the POP server and press enter.

6. Start transmission script on email server.

.\Capture Mutation Svcs.ps1 -Duration 120 -Trials 10 -Interface "eth0" -SVC Name

"Clio" -Protocol "POP" -C:[$True/$False]

7. From the switch’s root prompt, delete the flows created during the trial.

ovs-ofctl del-flows br1
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4.2.4.6 IMAP.

A Powershell script executed through PowerCLI automatically starts Wireshark captures

and sends Internet Message Access Protocol (IMAP) data. Two scripts are activated in

sequence to generate IMAP traffic. QoS trials for IMAP consist of a 7-step process and

issue commands to the client, server, controller, and switch. The sequence of events is as

follows.

1. From PowerCLI, log on to the vCenter server. Supply credentials when prompted.

Connect-VIServer 10.1.0.85

2. Navigate to directory holding powershell scripts (for example, C:\Users\smayer.CDN\

Documents\GitHub\Mayer_Thesis\Powershell_Scripts)

3. From the controller’s root prompt, initialize the mutator in verbose mode. Wait until

the controller displays the list of rIPvIP mappings. These are the mappings for the

current mutation interval.

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

4. From PowerCLI, Start transmission script on the client

\Capture Mutation Kali.ps1 -Duration 120 -Trials 10 -Interface "eth0" -SVC Name

"Aust Kali" -Protocol "IMAP" -C:[$True/$False]

5. When prompted, enter the vIP of the IMAP server and press enter.

6. Start transmission script on email server.

.\Capture Mutation Svcs.ps1 -Duration 120 -Trials 10 -Interface "eth0" -SVC Name

"Clio" -Protocol "IMAP" -C:[$True/$False]

7. From the switch’s root prompt, delete the flows created during the trial.

ovs-ofctl del-flows br1
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4.2.4.7 SMTP.

A Powershell script executed through PowerCLI automatically starts Wireshark cap-

tures and sends Simple Mail Transfer Protocol (SMTP) data. Two scripts are activated in

sequence to generate SMTP traffic. QoS trials for SMTP consist of a 7-step process and

issue commands to the client, server, controller, and switch. The sequence of events is as

follows.

1. From PowerCLI, log on to the vCenter server. Supply credentials when prompted.

Connect-VIServer 10.1.0.85

2. Navigate to the directory holding powershell scripts (For example, C:\Users\smayer.

CDN\Documents\GitHub\Mayer_Thesis\Powershell_Scripts)

3. From the controller’s root prompt, initialize the mutator in verbose mode. Wait until

the controller displays the list of rIPvIP mappings. These are the mappings for the

current mutation interval.

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

4. Start transmission script on the client.

.\Capture Mutation Kali.ps1 -Duration 120 -Trials 10 -Interface "eth0" -SVC Name

"Aust Kali" -Protocol "SMTP" -C:[$True/$False]

5. When prompted, enter the vIP of the SMTP server and press enter.

6. Start transmission script on the SMTP server.

.\Capture Mutation Svcs.ps1 -Duration 120 -Trials 10 -Interface "eth0" -SVC Name

"Clio" -Protocol "SMTP" -C:[$True/$False]

7. From the switch’s root prompt, delete the flows created during the trial.

ovs-ofctl del-flows br1
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4.2.4.8 FTP.

The File Transfer Protocol (FTP) trials retrieve a 50 MB file from the FTP server. The

transmission rate is limited to 500 Kbps to ensure a connection that lasts across several

mutations. A passive FTP connection is used [48]. One use case for a passive FTP con-

nection is a situation where the FTP server is unable to establish a data channel, such as

a restrictive firewall rule on the client side [49]. Packet captures are initialized before the

FTP connection is attempted. QoS trials for FTP consist of a 9-step process and issue

commands to the client, server, controller, and switch. The sequence of events is as follows.

1. Start Wireshark on client and server.

2. From the controller’s root prompt, initialize the mutator in verbose mode. Wait until

the controller displays the list of rIPvIP mappings. These are the mappings for the

current mutation interval.

ryu-manager Mutator PlebeNet.py --config-file params.conf --verbose

3. From the client, open a FTP connection via the lftp tool [50].

lftp 10.13.1.[ip]

4. Set transmission rate to 500 Kbps.

set net:limit-rate 500000:500000

5. Initiate download.

get Data50.txt

6. Once the transfer completes, close the FTP connection.

bye

7. Stop Wireshark on the client and server.

8. Calculate SHA-1 hash of transferred data.

sha1sum Data50.txt > FTP [M/C] [Trial#]
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9. From the switch’s root prompt, delete the flows created during the trial.

ovs-ofctl del-flows br1

4.3 Methodology Summary

This chapter describes the methodology used to measure the stability and effectiveness

of the RHM framework in addition to gathering QoS data for analysis. The validation

experiments use the same levels of hosts and mutation times as Aust did in the 30-host

experiments with and without active mutations. This information validates previous work

and indicates that the test network is properly configured for QoS analysis. Furthermore,

trials examine seven protocols under test for QoS performance. Controllable factors such

as hardware and software configurations remain constant to reduce variability in the data

and isolate the affect of RHM. The ability of the adversary to conduct a quick scan and

detect all hosts with and without active mutations determines network stability in addition

to ICMP pings and DNS requests.
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V. Results and Analysis

5.1 Summary of Results

Experiments have two goals. First, gather more data for efficacy of Random Host

Mutations (RHMs) as a way to impede adversary actions. Second, quantify the impact (if

any) on the Quality of Service (QoS) of common protocols of an RHM implementation.

Validation data on a network with 30 hosts confirms that scanning actions by an adversary

are less effective than a network without RHMs. Of the seven protocols under test, one

protocol (File Transfer Protocol (FTP)) fails and another (Hypertext Transfer Protocol

(HTTP)) presents anomalous behavior. This chapter provides an overview of the results;

test data can be found in Appendix B.

Experimental data gathered by Aust showed an increase in scan times and a decrease in

the number of hosts discovered by an adversary in a RHM network. The validation study

produced differences in the length of scan times when compared to Aust but supported the

conclusion that RHMs impede the ability of an adversary to successfully gather intelligence

about a target network.

T-tests at the 99% confidence level on QoS data found statistically-significant differences

in varying aspects of the seven protocols under test (p = 0.01). Table 7 describes which

protocols exhibited statistically-significant differences from control data for each metric.

FTP connections initiated by IP address do not function when mutations are active. Con-

nections through Fully Qualified Domain Name (FQDN) may still be possible, but require

extra modification to the mutator script (see Section 6.4). HTTP connections successfully

transfer data, but sent as much as 14.2 times the amount of packets when compared to con-

trol experiments. Such a dramatic increase in network traffic is unacceptable for large-scale

applications as the network would be overwhelmed with extraneous traffic and degrade

throughput. RTP exhibits an increase in jitter that may or may not be acceptable, de-

pending upon the performance requirements of the application using the protocol. Internet

Message Access Protocol (IMAP), Post Office Protocol (POP), Simple Mail Transfer Pro-
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tocol (SMTP), and Secure Shell (SSH) connections function with minimal differences when

compared to control experiments. In Table 7, cells colors correspond to level of difference

between means for control and mutator trials, which are detailed in the legend. The table is

colored in terms of the difference of the order of magnitude for the sample means since some

control samples had extremely small standard deviations. Coloring the table according to

the difference in standard deviation creates a misleading table where a reported difference

of hundreds of standard deviations masks the fact that the true performance difference is

only 1-4 milliseconds in most cases.

Table 7. Overview of Protocol Performance

Latency RTT Throughput Dropped Packets Jitter

FTP

HTTP

IMAP

POP

RTP N/A

SMTP

SSH

Legend Description

No difference

Difference within one order of magnitude

Difference of one order of magnitude

Difference of two orders of magnitude, or application-specific judgment required

Difference of at least three orders of magnitude, or broken protocol

Not Applicable
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5.2 Validation Data

5.2.1 Quick Scan.

5.2.1.1 Scan Time.

Time to complete a quick scan for Aust’s study and the validation study are shown in

Figure 14 along the y-axis in seconds. Of particular note is the large difference in scan

times despite the use of the same Nmap command in Aust’s experiments and the validation

experiments. It is possible that several options were omitted in the original trial or that

a smaller IP address range was scanned as this could account for some of the difference in

scan time.

While Aust’s data suggests that mutations increase scan time, the results from validation

experiments show a decrease in scan time compared to control. Regardless of the difference

in scan time, both experiments show a decrease in the number of hosts discovered by the

adversary as shown in Figure 15.
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Figure 14. Quick Scan Results

5.2.1.2 Hosts found.

Figure 15 reports the amount of hosts found by quick network scans in control and RHM

trials. In both the original data and the validation trial, RHM scans consistently reported

a number of detected hosts that was less than 74% of active hosts on the network at the

time of scan. Aust’s control data is not visible on the figure because it has the exact same

values as the validation control data. Control experiments validate Aust’s data. However,

mutator scans took between 40 and 60 seconds to complete so the amount of discovered

hosts plateaus at the maximum level of 22 hosts as mutation interval grew beyond the

required scan time. This data suggests that mutation intervals are most effective when

shorter than scanning activity by an adversary.
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Figure 15. Quick Scan Hosts Found

5.2.2 Intense Scan.

5.2.2.1 Scan Time.

Time to complete an intense scan for Aust’s study and the validation study are shown in

Figure 16 along the y-axis in seconds. As with the results in Section 5.2.1.1, there is a large

difference in scan times despite the use of the same Nmap command in Aust’s experiments

and the validation experiments. It is possible that several options were omitted in the

original trial or that a smaller IP address range was scanned as this could account for some

of the difference in scan time. Regardless of the difference in scan time, both experiments

showed a decrease in the number of hosts discovered by the adversary as shown in Figure 17.

Unlike Aust’s results, scans were manually terminated if they persisted beyond the amount
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of time required for two mutations to occur. Any results from such a scan would be out

of date and therefore useless to an adversary. This accounts for the mutator results of the

30-second, one-, and five-minute mutation windows. As with the results in Section 5.2.1.1,

the mutator caused adversary scans to terminate faster than control experiments which

provides inaccurate information.

Figure 16. Intense Scan Results

5.2.2.2 Hosts found.

Figure 17 reports the number of hosts found by intense network scans in control and

RHM trials. In both the original data and the validation trial, RHM scans consistently

report a number of hosts that was less than 74% of active hosts on the network at the time

of scan. Aust’s control data is not visible on the figure because it has the exact same values
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as the validation control data. Unlike Aust’s results, scans were manually terminated if

they persist beyond the amount of time required for two mutations to occur. Any results

from such a scan are out of date and therefore useless to an adversary. This accounts for the

results of the 30-second, one-, and five-minute mutation windows where no hosts were found.

The reason for results from intense scans in Aust’s study at smaller mutation intervals is

likely due to logging intermediate output of the Nmap scan in combination with the fact

that intense scans by Aust finished in a shorter amount of time (Figure 16). Since this

was not specified in the experimental procedure, intermediate output was not logged and

therefore lost when scans were terminated after exceeding the two-mutation limit [24]. For

scans at the 15 minute interval, a similar amount of hosts were discovered when compared

to Aust’s data. This data suggests that mutation intervals are most effective when shorter

than scanning activity by an adversary.
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Figure 17. Intense Scan Hosts Found

5.3 Quality of Service Data

This section reports the QoS data for the protocols under test. Each applicable cell in

Table 7 has a corresponding section for each protocol. The output of T-tests support claims

of statistical significance. T-tests are reported using a standardized format of:

t([degrees of freedom])=[t-statistic], p = [p-value]

5.3.1 FTP.

FTP failed to function under a RHM network. A connection could not be established

since server transmits its Real IP address (rIP) in payload of the FTP data to establish

a passive connection. While it is possible to open a connection by supplying a FQDN
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instead of an IP address, this would require modification to the mutator script to update

the Domain Name System (DNS) cache on the client. This process must occur in sync with

the frequency of mutations. Section 6.4 examines this concept in greater detail. Trials used

the Virtual IP address (vIP) of the FTP server to initiate connections. As a result, no

useful test data was collected to compare with control data as the client could not establish

a data channel to to the rIP of the server. Since the entire point of the mutator framework

is a focus on masking the rIP with a shifting vIP, the rIP was not accessible by the client.

Figure 18 contains the important packet exchanges of the mutator FTP connection. The

“No.” column indicates the frame number. “Source” and “Destination” show the source

IP address of the client and server. “Protocol” indicates the protocol associated with a

given frame. “Length” states the length of a frame in bytes. “Info” provides an overview

of the data transmitted in a frame. This packet capture occurred on the client (rIP of

10.13.1.8) when it communicated with the FTP server (vIP of 10.13.1.44). Frames 9-11

contain the three-way handshake for initialization of the Transmission Control Protocol

(TCP) connection. Frames 12-16 show that FTP control channel data can travel between

the client and server. Frames 17-39 contain similar information and are omitted for brevity.

The entire conversation, including frames 17-39, is available in Appendix B.1.

The client requests a passive FTP connection in frame 40. The server responds with

frame 41 and states that the IP address to use for the connection is its rIP of 10.13.1.4.

The payload of this packet contains the rIP of the server in the payload, shown in Figure 19

and boxed in red. The client does not know how to contact 10.13.1.4, so it creates Address

Resolution Protocol (ARP) requests such as those shown in frames 42 and 44-46. Since the

rIP:vIP table only resolves vIPs, the passive IP address in the payload is inaccessible. Fig-

ure 20 displays the contents of an ARP request (boxed in red) created in this transmission.

10.13.1.4 is not in the mutations table so no ARP responses appear and the file transfer

cannot happen. Frames 47-54 show the termination of the connection between client and

server.
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Figure 18. Filtered FTP Stream
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Figure 19. FTP Server Initiation of Passive Mode in Frame 41

Figure 20. ARP Request for rIP of FTP Server in Frame 42

This data demonstrates the usability issue that RHM-enabled networks present for FTP

connections. As long at FTP transmits the client or server rIP as in Figure 19, then this

protocol will not function with RHM. Alternative means of file transfer should be examined

if possible to use RHM on a network.
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5.3.2 HTTP.

HTTP is a stateless application-level protocol designed for flexible interaction with

network-based hypertext information systems [51]. This protocol presents a uniform in-

terface to clients and has seen widespread adoption since its inception in 1989. TCP is a

common choice of transport layer protocol for HTTP as HTTP assumes a reliable transport

layer protocol. Four metrics were assessed: latency, Round Trip Time (RTT), throughput,

and dropped packets. Of these four metrics, three indicated a statistically-significant differ-

ence between the control and mutator trials. The following sections provide box & whisker

plots for tested metrics and an overview of t-test results. Unabridged output from t-tests

and the R script used to generate them are available in Appendix B.2 and Appendix D,

respectively. Due to anomalous behavior discussed in Section 5.3.2.4, HTTP should be

approached with caution when used with RHM as described in this thesis.

5.3.2.1 Latency.

Figure 21 depicts the latency perceived by the server that hosts the HTTP service used

by a client. The y-axis represents time in seconds. The x-axis separates trials with RHM

or control trials without RHM. Average mutation latency (1.875e-03 seconds) is greater

than average latency in control experiments (3.249e-05 seconds). There was a statistically-

significant difference in the latency for HTTP communications under a network using RHM;

t(58)=57.229, p <2.2e-16. While this difference was statistically significant, a difference of

2 milliseconds may still be an acceptable increase in latency for some networks.

68



Figure 21. Box & Whisker Plot of Latency Between Control and Mutator Trials for HTTP

5.3.2.2 RTT.

Figure 22 portrays the RTT for data sent by the client and subsequent server responses

from the HTTP server. The y-axis represents time in seconds. The x-axis separates trials

with RHM or control trials without RHM. Average mutation RTT (0.020 seconds) is

greater than average RTT in control experiments (0.004 seconds). There was a statistically-

significant difference in the RTT for IMAP communications under a network using RHM;

t(58)=69.219, p <2.2e-16. The increase in RTT is due to the performance of HTTP under

mutations, which sent massive amounts of traffic to convey the same amount of data when

compared to the control, which was set to transmit at a limited rate. This restricted rate of

transmission was chosen to decrease the size of packet capture files needed for analysis but

still have an active connection across mutations. In other words, the mutator connection
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needed to work “harder” (i.e., send more data at a faster rate) to transfer the same data as

control trials.

Figure 22. Box & Whisker Plot of RTT Between Control and Mutator Trials for HTTP

5.3.2.3 Throughput.

Figure 23 details the throughput for data received by the server in terms of bits-per-

second (bps). The y-axis represents bps. The x-axis separates trials with RHM or control

trials without RHM. Average mutation throughput (7396.133 bps) is greater than average

throughput in control experiments (6474.200 bps). There was a statistically-significant

difference in the throughput for HTTP communications under a network using RHM;

t(58)=12.483, p <2.2e-16. HTTP mutation trials exhibited anomalous behavior that caused

a large amount of retransmission packets to be sent during a trial. This accounts for the

increased throughput even though the same file was transferred between hosts. As stated
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in Section 5.3.2.2, the mutator connection needed to work “harder” (i.e., send more data

at a faster rate) to transfer the same data as control trials.

Figure 23. Box & Whisker Plot of Throughput Between Control and Mutator Trials for HTTP

5.3.2.4 Dropped Packets.

HTTP traffic presented anomalous behavior when compared to control trials. While

a standard control trial generated somewhere in the area of 5000 packets on the server

side, mutator trials generated anywhere between 69,000 and 71,000 packets. Due to the

underlying structure of TCP, all the HTTP data successfully transferred across. However,

this comes at the cost of nearly 14.2 times as much traffic when compared to control trials.

The balance of packet types seen across control and mutation trials is shown in Figure 24.

It is hard to imagine a scenario where so much extraneous HTTP traffic is acceptable on
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a real-world network. The root cause of this issue is puzzling since other TCP protocols

did not exhibit similar behavior. Further research is required to determine the root cause,

though there is a high chance the answer lies within the mutator script since no other aspect

of the network or connection used was changed between trials. For this reason, RHM as

presented in this thesis is unsuitable for HTTP traffic without further research.

Figure 24. Distribution of Packet Types Across All Control and Mutator Trials for HTTP.

Several types of traffic are shown in Figure 24. They are defined in the following list:

• Window Update: Window Updates occur when the receiving application has created

enough space in its TCP buffer that in can handle more data from the sender [52].

• Window Full : These packets indicate that the TCP window is full and cannot receive

more data until the TCP buffer has emptied [52].
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• Spurious Retransmission: These are the retransmissions in which the receiver acknowl-

edged the packet after the Sender retransmits the packet due to a retransmission time

out [53].

• Retransmission: Occurs when the sender retransmits a packet after the expiration of

the acknowledgment [52].

• Out of Order : Occurs when a packet is seen with a sequence number lower than the

previously received packet on that connection [52].

• Lost ACK : These are ACKs that Wireshark cannot match with a sent segment [52].

• Fast Retransmission: Occurs when the sender retransmits a packet before the expira-

tion of the acknowledgment timer [52]. Senders should perform this action upon the

receipt of three duplicate ACKs [52].

• Duplicate ACK : Occurs when the same ACK number is seen and it is lower than the

last byte of data sent by the sender [52].

• Data: These packets contain the actual data requested by the client in a transmission.

5.3.3 IMAP.

IMAP is a standard email protocol defined by RFC 3501 that enables a client to store

and manipulate messages on a server in a way that is similar to local folders [54]. IMAP uses

a Transmission Control Protocol/Internet Protocol (TCP/IP) connection to transfer data.

Four metrics were assessed: latency, RTT, throughput, and dropped packets. Of these four

metrics, only latency indicated a statistically-significant difference between the control and

mutator trials. The following sections provide box & whisker plots for tested metrics and an

overview of t-test results. Unabridged output from t-tests and the R script used to generate

them are available in Appendix B.3 and Appendix D, respectively. Overall, IMAP did not

exhibit behavior that suggested it is unsuitable for use a RHM-enabled network.
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5.3.3.1 Latency.

Figure 25 depicts the latency perceived by the server that hosts the IMAP service

used by a client. The y-axis represents time in seconds. The x-axis separates trials with

RHM or control trials without RHM. Average mutation latency (0.004 seconds) is greater

than average latency in control experiments (0.001 seconds). There was a statistically-

significant difference in the latency for IMAP communications under a network using RHM;

t(58)=4.4067, p= 4.593e-05. An extra 3 milliseconds of latency on average for IMAP

connections is unlikely to have an adverse impact for users of a network.

Figure 25. Box & Whisker Plot of Latency Between Control and Mutator Trials for IMAP
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5.3.3.2 RTT.

Figure 26 portrays the RTT for data sent by the client and subsequent server responses

from the IMAP server. The y-axis represents time in seconds. The x-axis separates trials

with RHM or control trials without RHM. Average mutation RTT (0.035 seconds) is greater

than average RTT in control experiments (0.001 seconds). This difference across several

orders of magnitude is due to outliers in the mutation trials. Without outliers, the average

is 0.002 seconds. There was not a statistically-significant difference in the RTT for IMAP

communications under a network using RHM; t(58)=1.4843, p= 0.1431. An additional

millisecond added to RTT is a small price to pay for the benefits of RHM.

Figure 26. Box & Whisker Plot of RTT Between Control and Mutator Trials for IMAP
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5.3.3.3 Throughput.

Figure 27 details the throughput for data received by the server in terms of Bits per

second (bps). The y-axis represents bps. The x-axis separates trials with RHM or control

trials without RHM. Average mutation throughput (382.133 bps) is greater than average

throughput in control experiments (380.000 bps). The slight increase in average throughput

can be explained by the additional packets required to make up for dropped packets recored

in Section 5.3.3.4. There was not a statistically-significant difference in the throughput

for IMAP communications under a network using RHM; t(58)=1.3442, p= 0.1841. With

respect to throughput, there is no meaningful difference and therefore no adverse impact to

QoS.

Figure 27. Box & Whisker Plot of Throughput Between Control and Mutator Trials for IMAP
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5.3.3.4 Dropped Packets.

Figure 28 illustrates the average amount of dropped packets for control and mutation

trials. The y-axis represents the number of dropped packets, which is an integer value

since packets cannot be partially dropped. The x-axis separates trials with RHM or control

trials without RHM. The mutation drop rate of 0.300 packets is the calculated average

across all trials and is greater than the average drop rate in control experiments (0.000

packets). The IMAP connection did not omit any data as TCP has built-in safeguards to

handle dropped packets. There was not a statistically-significant difference in the amount

of dropped packets for IMAP communications under a network using RHM; t(58)=1.6075,

p= 0.1134.

Figure 28. Box & Whisker Plot for Number of Dropped Packets Between Control and Mutator
Trials for IMAP
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5.3.4 POP.

POP is a protocol used by local a e-mail client to access mail stored on a server. Per

RFC 1939, POP normally downloads and then deletes mail from the server [55]. Extensive

manipulations of mail are handled by more complex protocols, such as IMAP or webmail

[55]. POP uses a TCP/IP connection to transfer data. Four metrics were assessed: latency,

RTT, throughput, and dropped packets. Of these four metrics, two indicated a statistically-

significant difference between the control and mutator trials. The following sections provide

box & whisker plots for tested metrics and an overview of t-test results. Unabridged output

from t-tests and the R script used to generate them are available in Appendix B.4 and

Appendix D, respectively.

5.3.4.1 Latency.

Figure 29 depicts the latency perceived by the server that hosts the POP service used by

a client. The y-axis represents time in seconds. The x-axis separates trials with RHM or con-

trol trials without RHM. Average mutation latency (0.028 seconds) is greater than average

latency in control experiments (0.001 seconds). There was a statistically-significant differ-

ence in the latency for POP communications under a network using RHM; t(57)=184.96,

p <2.2e-16. Since users retrieve email in sporadic bursts rather than sustained queries to

the mail server, an increase of 27 milliseconds when compared to control data is unlikely to

have critical impacts to QoS. In the event that such an increase in latency in unacceptable,

IMAP and webmail have established themselves as other means to handle email traffic.
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Figure 29. Box & Whisker Plot of Latency Between Control and Mutator Trials for POP

5.3.4.2 RTT.

Figure 30 portrays the RTT for data sent by the client and subsequent server responses

from the POP server. The y-axis represents time in seconds. The x-axis separates trials

with RHM or control trials without RHM. Average mutation RTT (0.122 seconds) is greater

than average RTT in control experiments (0.001 seconds). This difference across several

orders of magnitude is due to two outliers that skews the data. Without these outliers, the

average is 0.002 seconds. There was not a statistically-significant difference in the RTT for

POP communications under a network using RHM; t(57)=2.18, p= 0.0334. When outliers

are accounted for, an additional millisecond added to average RTT does not pose an adverse

impact to QoS.
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Figure 30. Box & Whisker Plot of RTT Between Control and Mutator Trials for POP

5.3.4.3 Throughput.

Figure 31 details the throughput for data received by the server in terms of bits-per-

second (bps). The y-axis represents bps. The x-axis separates trials with RHM or control

trials without RHM. Average mutation throughput (318.667 bps) is greater than average

throughput in control experiments (291.733 bps). The slight increase in average throughput

can be explained by the additional packets required to make up for dropped packets recored

in Section 5.3.4.4. There was a statistically-significant difference in the throughput for

IMAP communications under a network using RHM; t(58)=10.189, p= 1.541e-14. With

respect to throughput, the difference between control and mutator trials does not introduce

enough extra traffic to the network to pose concerns about the impact on QoS.
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Figure 31. Box & Whisker Plot of Throughput Between Control and Mutator Trials for POP

5.3.4.4 Dropped Packets.

Figure 32 illustrates the average amount of dropped packets for control and mutation

trials. The y-axis represents the number of dropped packets, which is an integer value

since packets cannot be partially dropped. The x-axis separates trials with RHM or control

trials without RHM. The average mutation drop rate of 0.600 packets is the calculated

average across all trials and is less than the average drop rate in control experiments (1.000

packets). Dropped packets are determined by the calculation of total packets perceived by

the client minus total packets perceived by the server. In the case of POP, a reply to the

LIST command from the client send messages that were longer than the standard Ethernet

frame size of 1518 Bytes. Therefore, the server response was fragmented and perceived

as two packets by the client. This means that no packets were dropped for the majority
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of control experiments and the calculated average is misleading. The POP connection

did not omit any data as TCP has built-in safeguards to handle dropped packets. There

was not a statistically-significant difference in the amount of dropped packets for POP

communications under a network using RHM; t(58)=1.4841, p= 0.1432.

Figure 32. Box & Whisker Plot of Dropped Packets Between Control and Mutator Trials for
POP

5.3.5 RTP.

Real-time Transport Protocol (RTP) delivers audio and video over IP networks. As

such, it is prevalent in telephony, video teleconference, and television services. This protocol

usually runs over User Datagram Protocol (UDP) to carry media streams. This protocol

is one of the underpinnings of Voice over IP (VoIP). RFC 3550 provides the most current

definition of the protocol [56]. Three metrics were assessed: jitter, throughput, and dropped
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packets. Of these three metrics, only jitter indicated a difference between the control and

mutator trials. The following sections provide box & whisker plots for tested metrics and an

overview of t-test results. Unabridged output from t-tests and the R script used to generate

them are available in Appendix B.5 and Appendix D, respectively.

5.3.5.1 Jitter.

Figure 33 depicts the jitter perceived by the server that receives the RTP stream sent

by the source. The y-axis represents time in seconds. The x-axis separates trials with RHM

or control trials without RHM. Average mutation jitter (0.355 seconds) is greater than

average jitter in control experiments (0.227 seconds). R was unable to conduct a t-test with

the data supplied due to minimal variation in the data, which did not produce a meaningful

t-statistic. Despite this, the difference in mean jitter is evidenced in Figure 33. Section 4.2.1

notes that maximum acceptable jitter is 50 milliseconds. However, part of the jitter data

can be accounted for by the fact that packets were sent once per second. Examination of

the increase in jitter from control to mutator, the average increase is 128 milliseconds. This

is greater than the 50 millisecond maximum. This may present an adverse impact to QoS,

but that determination should be made on a case by case basis dependent upon the network

and application(s) in use.
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Figure 33. Box & Whisker Plot of Jitter Experienced by Receiver Between Control and
Mutator Trials for RTP

5.3.5.2 Throughput.

Figure 34 details the throughput for data received by the server in terms of bits-per-

second (bps). The y-axis represents bps. The x-axis separates trials with RHM or con-

trol trials without RHM. Average mutation throughput (1551.800 bps) is greater than

average throughput in control experiments (1427.733 bps). There was a statistically-

significant difference in the throughput for RTP communications under a network using

RHM; t(58)=6.1149, p= 8.804e-08. Much of the variety in throughput can be accounted

for by the semi-automated testing procedure for RTP. Some of the variability is due to

human imprecision since the packet capture and traffic generator were terminated by hand.

The remaining outliers in Section 5.3.5.3 are primarily caused by dropped packets. A better
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experimental design would have fully automated the capture and transmission of RTP data.

Figure 34. Box & Whisker Plot of Throughput Between Control and Mutator Trials for RTP

5.3.5.3 Dropped Packets.

Figure 35 illustrates the average amount of dropped packets for control and mutation

trials. The y-axis represents the number of dropped packets, which is an integer value since

packets cannot be partially dropped. The x-axis separates trials with RHM or control trials

without RHM. The mutation drop rate of 12.500 packets is the calculated average from

all trials and is greater than the average drop rate in control experiments (-8.400 packets).

Since RTP uses UDP at the transport layer, those dropped packets did not reach the server.

There was a statistically-significant difference in the amount of dropped packets for RTP

communications under a network using RHM; t(58)=9.1971, p= 6.28e-13. Negative results
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in the dropped amount of packets are accounted for by the method in which dropped packets

for RTP were calculated (i.e., TotalSent−TotalReceived). For RTP, the individual streams

were isolated in Wireshark and the total amount of RTP packets sent by the client an server

were computed. The client total subtracted from the server total indicated the amount of

packets dropped. Timing issues in the semi-automated format of experiments likely caused

negative results in situations where the packet capture began after transmission started. A

better experimental design would have fully automated the capture and transmission of RTP

data. Despite these issues, RTP packets still seem to successfully arrive in a RHM-enabled

network.

Figure 35. Box & Whisker Plot of Dropped Packets Between Control and Mutator Trials for
RTP
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5.3.6 SMTP.

SMTP is standardized form of email transmission defined in RFC 821 and updated

in RFC 5321. Mail servers and other mail agents use SMTP to send or receive messages

whereas clients may use IMAP, POP, or webmail. SMTP requires a reliable ordered data

stream channel, so TCP is a common choice but other modes are possible [57]. Four metrics

were assessed: latency, RTT, throughput, and dropped packets. Of these four metrics, only

latency indicated a statistically-significant difference between the control and mutator trials.

The following sections provide box & whisker plots for tested metrics and an overview of

t-test results. Unabridged output from t-tests and the R script used to generate them are

available in Appendix B.6 and Appendix D, respectively.

5.3.6.1 Latency.

Figure 36 depicts the latency perceived by the server that hosts the SMTP service in use.

The y-axis represents time in seconds. The x-axis separates trials with RHM or control trials

without RHM. Average mutation latency (0.065 seconds) is greater than average latency in

control experiments (0.061 seconds). There was a statistically-significant difference in the

latency for SMTP communications under a network using RHM; t(58)=5.6527, p=5.056e-

07. However, an increase in average latency of four milliseconds is unlikely to have a

noticeable impact on applications that require SMTP.
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Figure 36. Box & Whisker Plot of Latency Between Control and Mutator Trials for SMTP

5.3.6.2 RTT.

Figure 37 portrays the RTT for data sent by the client and subsequent server responses

from the SMTP server. The y-axis represents time in seconds. The x-axis separates trials

with RHM or control trials without RHM. Average mutation RTT (0.133 seconds) is greater

than average RTT in control experiments (0.013 seconds). Four outliers skewed the mutator

averages. Without the outliers, the mutation average is 0.014 seconds. Despite outliers,

there was not a statistically-significant difference in the RTT for IMAP communications

under a network using RHM; t(58)=2.1415, p= 0.03645. Without outliers, an average

increase in RTT of 1 millisecond is unlikely to have an noticeable impact and rare cases

where RTT is greater pose little threat to reliable QoS.
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Figure 37. Box & Whisker Plot of RTT Between Control and Mutator Trials for SMTP

5.3.6.3 Throughput.

Figure 38 details the throughput for data received by the server in terms of bps. The

y-axis represents bps. The x-axis separates trials with RHM or control trials without RHM.

Average mutation throughput (226.400 bps) is less than average throughput in control ex-

periments (228.000 bps). There was not a statistically-significant difference in the through-

put for IMAP communications under a network using RHM; t(58)=2.1122, p= 0.03898.

Some of the outliers in throughput for mutator trials can be accounted for by trials that

terminated packet captures before the SMTP connection was closed. Increased automation

of the testing procedure would eliminate this discrepancy.

89



Figure 38. Box & Whisker Plot of Throughput Between Control and Mutator Trials for SMTP

5.3.6.4 Dropped Packets.

Figure 39 illustrates the average amount of dropped packets for control and mutation

trials. The y-axis represents the number of dropped packets, which is an integer value since

packets cannot be partially dropped. The x-axis separates trials with RHM or control trials

without RHM. The average mutation drop rate of 0.533 packets is the calculated average

based upon all trials and is greater than the average drop rate in control experiments (0.000

packets). The SMTP connection did not omit any data as TCP has built-in safeguards to

handle dropped packets. There was not a statistically-significant difference in the amount

of dropped packets for SMTP communications under a network using RHM; t(58)=2.1122,

p= 0.03898.
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Figure 39. Box & Whisker Plot of Dropped Packets Between Control and Mutator Trials for
SMTP

5.3.7 SSH.

SSH is a protocol for secure remote login over an insecure network. Designed as a

replacement for telnet and other insecure remote shell protocols, SSH is used to provide

confidentiality and integrity of data. Transport later aspects of SSH are defined in RFC

4253 [58]. Four metrics were assessed: latency, RTT, throughput, and dropped packets. Of

these four metrics, two indicated a statistically-significant difference between the control

and mutator trials. The following sections provide box & whisker plots for tested metrics

and an overview of t-test results. Unabridged output from t-tests and the R script used to

generate them are available in Appendix B.7 and Appendix D, respectively.
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5.3.7.1 Latency.

Figure 40 depicts the latency perceived by the server that hosts the SSH service used by a

client. The y-axis represents time in seconds. The x-axis separates trials with RHM or con-

trol trials without RHM. Average mutation latency (0.003 seconds) is equal to the average

latency in control experiments (0.003 seconds). There was not a statistically-significant dif-

ference in the latency for SSH communications under a network using RHM; t(58)=0.27478,

p= 0.7845. The data does not suggest an adverse QoS impact to latency.

Figure 40. Box & Whisker Plot of Latency Between Control and Mutator Trials for SSH

5.3.7.2 RTT.

Figure 41 portrays the RTT for data sent by the client and subsequent server responses

from the SSH server. The y-axis represents time in seconds. The x-axis separates trials
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with RHM or control trials without RHM. Average mutation RTT (0.0011 seconds) is

greater than average RTT in control experiments (0.0008 seconds). There was a statistically-

significant difference in the RTT for SSH communications under a network using RHM;

t(58)=6.9831, p= 3.129e-09. Despite this difference, an increase in RTT of 0.3 milliseconds

would not have a negative impact on QoS.

Figure 41. Box & Whisker Plot of RTT Between Control and Mutator Trials for SSH

5.3.7.3 Throughput.

Figure 42 details the throughput for data received by the server in terms of bps. The

y-axis represents bps. The x-axis separates trials with RHM or control trials without RHM.

Average mutation throughput (3203.533 bps) is less than average throughput in control

experiments (3339.267 bps). There was a statistically-significant difference in the through-
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put for SSH communications under a network using RHM; t(58)=8.6838, p= 4.424e-12.

However, a difference of 133.734 bps does not indicate a large enough change in network

traffic to concern network infrastructure with a switch fabric capacity of 176 Gigabits per

second (Gbps).

Figure 42. Box & Whisker Plot of Throughput Between Control and Mutator Trials for SSH

5.3.7.4 Dropped Packets.

Figure 43 illustrates the average amount of dropped packets for control and mutation

trials. The y-axis represents the number of dropped packets, which is an integer value since

packets cannot be partially dropped. The x-axis separates trials with RHM or control trials

without RHM. The average mutation drop rate of 0.033 packets is the calculated average

from all trials and is less than the average drop rate in control experiments (1.000 packet).
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As with POP, some of the messages sent were larger than the standard Ethernet frame size

of 1518 Bytes. Specifically, the server key exchange initialization was 1714 Bytes. From the

server perspective, this packet was not broken up into multiple packets but on the client

packet captures, it appeared as two packets. This means that no packets were dropped

by the control trials and the calculated average is misleading. The SSH connection did

not omit any data as TCP has built-in safeguards to handle dropped packets. Therefore,

despite a calculated statistically-significant difference in the amount of dropped packets of

t(58)=12.794, p <2.2e-16, the true difference in means is closer to 0.033 packets for mutator

and 0 packets for the control. As a result, no adverse QoS impact should be expected when

using an established SSH connection.

Figure 43. Box & Whisker Plot of Dropped Packets Between Control and Mutator Trials for
SSH
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VI. Conclusions and Recommendations

6.1 Overview

This chapter provides a summary of the research conducted. Section 6.2 states the

conclusions of the research. Section 6.3 explains how this research contributes to the field

of study related to Software-Defined Networking (SDN). Section 6.4 presents new research

paths for future exploration.

6.2 Research Conclusions

This research met the three goals of stability, efficacy, and Quality of Service (QoS)

assessment identified in the design phase. Experimental data demonstrated the stability and

efficacy of a Random Host Mutation (RHM)-enabled network and provided results on the

QoS impact of this technique. The stable design of RHM ensured that all designated targets

were reachable from inside their own subnets, could send successful Internet Control Message

Protocol (ICMP) pings and Domain Name System (DNS) requests, and were exploitable by

the adversary. RHM also reduced the ability of an adversary to discover hosts and ensured

they were only accessible through their Virtual IP address (vIP). This line of research

confirms the defensive efficacy of RHMs against scans as first determined by Aust.

QoS analysis reveals the impact that RHMs have on seven application layer protocols

that use Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) at the

transport layer. The experimental design successfully enabled the isolated assessment of

various protocols without interference from other confounding factors. All network assets

produced detailed logs of network traffic with Wireshark. This resulted in a controlled,

static environment to produce verifiable conclusions about QoS. Three protocols exhibit a

decrease in QoS that may not be acceptable, based upon network requirements. The other

four do not show a difference in QoS large enough to create concern, if at all. Based upon

the design goals of stability, efficacy, and QoS assessment, the experiments have met all

three goals.
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However, RHMs do not impede an adversary’s ability to maintain persistence on com-

promised hosts. Aust’s initial research into Proactive Host Mutation (PHM) produced code

that does not maintain active connections after a mutation occurs. As a result, active

connections were terminated after each mutation. This rendered the network unusable if a

connection lasted longer than one mutation interval. This design flaw required a solution

for SDN-enabled MTD to have a chance at use in real-world networks. The RHM technique

described in this thesis created a version of Aust’s work that overcame this critical issue and

ensured greater usability. In combination with IDS-integration, which is presented as future

work in Section 6.4, the disruption to adversary scanning attempts make the adversary less

stealthy and make targets harder to reliably exploit. The compressed decision making cycle

produced by frequent mutation intervals amplifies this effect, especially at shorter mutation

intervals.

6.2.1 Stability.

Design of the testbed network showed all target hosts and network services remain ac-

cessible from inside the network and maintain connectivity as indicated by ICMP ping tests.

DNS also resolved the Fully Qualified Domain Names (FQDNs) for network services. The

adversary always exploited target machines given that it discovered the current vIP associ-

ated with the target and launched an attack before a mutation occurred. The occurrence of

a mutation before completion of an attack accounts for the instances where the adversary

failed to exploit a target. This is the expected behavior from a RHM-enabled network and

not a stability issue.

6.2.2 Effectiveness.

A validation study of Aust’s trials with 30 hosts confirms the efficacy of RHMs as a

defensive technique against scans. While there is a discrepancy in the time required to

conduct network scans, scans from validation trials report a smaller number of perceived

hosts when compared to the number of total hosts. As with the PHM mutator created by

Aust, the RHM mutator does not allow traffic to reach the Real IP address (rIP) of a target;
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it only accepts traffic directed to the vIP associated with a host for the current mutation

interval.

A key distinction between PHM implemented by Aust and RHM is the ability of RHM

networks to allow connections that persist beyond one mutation. Initial experiments reveal

that the original mutator code deletes all rIP:vIP mappings with each mutation and provides

no means to maintain a connection that spanned multiple mutations. Without this ability,

PHM does not have value as a MTD in realistic network scenarios. A key contribution of this

thesis was the modification of mutator code to enable connections across multiple mutations.

However, this ability does not distinguish between legitimate and malicious traffic which

does not impede the adversary’s ability to maintain persistence on a compromised host.

Given the need to balance security and usability, this tradeoff is acceptable.

Based upon previous results and limitations in design of the RHM framework, one con-

cludes that RHMs provide a means of defense against the reconnaissance and scanning

phases of adversary action. RHMs do not reduce the ability of an adversary to maintain

persistence through a host, as that requires the ability to reliably distinguish legitimate

traffic from malicious traffic. This may be possible for well-known exploits, but becomes

impractical given the wide array of malicious traffic which may be obfuscated by the adver-

sary.

6.2.3 Quality of Service.

There is a statistically-significant difference in either latency or jitter for three of the

seven protocols under test. After removal of outliers, no protocols indicate a difference in

Round Trip Time (RTT). One protocol, Hypertext Transfer Protocol (HTTP), shows a

difference in throughput and packet drop rate. The quantification of these metrics informs

network engineers about the performance cost of RHMs. In some cases, the differences

between RHM and control performance, while statistically significant, are minimal and

may be an acceptable overhead cost for some applications. This information provides a

foundation for further research into QoS with RHM and allows network engineers to make

decisions based upon proven data to balance security and usability.
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6.3 Significance of Research

6.3.1 Contributions.

This research focuses on validation of the studies conducted by Aust and the QoS impli-

cations of RHM on a network. The concept of RHM stems from researchers at University of

North Carolina (UNC) where preliminary efforts were done in mininet, a network emulator

[31]. Mininet serves as an excellent prototype platform, but does not indicate performance

when applied to actual hardware and software. Based upon Aust’s efforts, the research

herein confirms the ability of RHMs to impede the scanning activity of an adversary. While

Aust’s research notes the effect that PHM has on attacks launched by adversaries, it does

not describe how legitimate traffic may be affected. PHM also presents serious problems to-

ward network usability by legitimate users. RHMs do not provide additional defense against

exploits launched by an adversary, but they do create a limited window of opportunity for

adversaries to launch attacks. Analysis of RHM also informs potential users how their net-

works may be affected by the examination of seven protocols in common use. File Transfer

Protocol (FTP), HTTP, and Real-time Transport Protocol (RTP) show decreases in per-

formance, whereas Internet Message Access Protocol (IMAP), Post Office Protocol (POP),

Simple Mail Transfer Protocol (SMTP), and Secure Shell (SSH) do not.

6.3.2 Applications.

The value of a MTD provides the primary impetus for RHMs as a defensive counter-

measure. Frustration of an attacker and the creation of incomplete intelligence provides

an edge skewed toward defensive efforts. Adversaries are left with two choices to launch

successful attacks: increase the scan rate at the risk of detection by an Intrusion Detection

System (IDS) and less precise intelligence, or stop scans entirely. The former presents a

noisier adversary that an IDS could detect whereas the latter leaves an adversary with in-

complete or incorrect data. The RHM framework also leverages the flexibility of SDN to

enable modification for whatever specific implementation details may best suit a potential

user (e.g., Supervisory Control and Data Acquisition (SCADA) applications, traditional
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IT).

6.4 Future Work

The work by previous researchers and this thesis present several opportunities for future

work in the MTD research area.

1. Media Access Control (MAC) Address and Port mutation: As noted in Section 1.5, a

determined adversary could identify targets on the network via other defining char-

acteristics. SDN allows modification of MAC address and port fields in packets. A

similar approach as described in this thesis could add another layer of difficulty to

adversary actions for a network that uses RHM.

2. Multiple controller configurations: The use of a single controller in the test network

presents a centralized point of failure. A real-world implementation of SDN would

benefit from multiple controller for load balancing and failure redundancy. In the

case of time-sensitive mutations, synchronization of the mutation table must be im-

plemented.

3. Optimal mutation rate and address range determination: As first indicated by Jafarian

in 2012, allocation of virtual IP addresses is an instance of the knapsack problem [31].

While experiments in this thesis were on a small enough scale that nàıve allocation

techniques suffice, other RHM implementations would benefit from address allocation

schemes custom-tailored to the specifics of the networks in which they are used. For

example, a shifting mutation rate instead of the constant rates in experiments could

further confound adversaries as they launch scans and attacks on the network. Address

ranges also require one vIP for each rIP. In a standard /24 subnet, this means that up

to half the address space is wasted on IP addresses that do not resolve to actual hosts.

A comparative analysis of ways to determine the frequency at which mutations should

occur, as well as ways to allocate vIPs , would prove useful to support real-world use

of RHM as a MTD.
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4. IDS integration: The ability of RHM to prompt noisier adversary actions on a net-

work is mentioned several times. To capitalize on this change in adversary behavior,

integration of statistics gathered by the SDN infrastructure with an IDS allows for

better active defense. The specifics of how an SDN controller or switch could integrate

with an IDS depends upon further research.

5. Honeypot integration: Mutations provide a layer of obfuscation to the true char-

acteristics of a network. Honeypots create false targets to tempt exploitation. A

combination of these two concepts may provide a way to further confuse and impede

adversary actions. One potential application of honeypots with RHM could be a “fol-

lower” strategy. In this instance, honeypots would be assigned vIPs that belonged

to legitimate hosts in the previous mutation. This can result in an adversary that

launches an attack on a honeypot running the same set of services as legitimate users

due to stale network intelligence.

6. Graceful flow management: Flows stored on the SDN switches are created by network

traffic previously encountered by the controller. In this implementation of RHM, they

are removed from the SDN devices after a timeout period that starts once no received

traffic matches the flow. A more precise version of RHM examines characteristics

such as header flags in the transport layer and then removes flows once a terminated

connection is detected. Some SDN hardware may require specific versions of the

Operating System (OS) in order to detect information with this degree of detail. This

form of flow management can suffer from spoofed traffic, unless precautions are taken

by the controller to be aware of such attempts.

7. DNS and Address Resolution Protocol (ARP) updates: As discussed in Section 5.3.1,

some protocols (e.g., FTP) do not function when IP address resolution is in use.

If the IP address exists in the payload of the packet, then RHM presents usability

challenges. Use of FQDNs also presents an issue due to DNS caches on hosts in

the network. One possible solution to this problem is the creation of DNS updates

from the controller that update the mapping between FQDN and the IP address of

101



critical network services. As the controller calculates new rIP:vIP mappings, it would

also update a separate list of IP addresses and DNS records. The mappings in this

additional table then propagate to the hosts and keep their DNS cache in sync with

the current network state. For applications reliant upon MAC addresses, a similar

technique can update the ARP caches of hosts in the network. As with graceful flow

management, this method of updating DNS and ARP caches may be vulnerable to

spoofing efforts by an adversary.

6.5 Chapter Summary

RHM as a MTD is a cutting-edge technique that disrupts scanning activity of adversaries

before they can launch attacks on network assets. If an adversary has a constrained window

of opportunity to launch a successful attack, then there is a higher likelihood that the

attacker commits an error in one of the steps of the cyberattack methodology (Figure 4).

The conclusions made in this chapter stem from extensive tests conducted in a network that

mimics what could be expected in a small enterprise network. This chapter also examines

applications for RHMs and directions for future work.
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Appendix A. Validation Study Results

A.1 Original Results

This section contains the data from all of Aust’s experiments [24]. For the sake of

brevity, all column headers in this section are described here. Trial indicates the mutation

interval in use for the corresponding data in Appendix A.1.1 and the index of the associated

data for all other tables. Mutator indicates if the data was gathered with PHMs active on

the network. A 1 indicates that PHM was active, a 0 indicates that it was not. Scan - I

refers to the number of seconds required to complete an intense scan. Scan - Q refers to

the number of seconds required to complete a quick scan. Hosts - I refers to the number of

perceived hosts based upon intense scan results. Hosts - Q refers to the number of perceived

hosts based upon quick scan results. Pen Time - I displays the amount of time that an

adversary maintained access on a target host following the results of an intense scan. Pen

Time - Q indicates the amount of time that an adversary maintained access on a target

host following the results of a quick scan. Cells that contain a “-” indicate that no data

was collected for reasons explained in the section that contains the graph.

A.1.1 Averages.

Table 8. Averages from Aust’s Experiments

Trial Mutator Scan - I Scan - Q Hosts - I Hosts - Q Pen Time - I Pen Time - Q

30S 0 84.092 5.44 30 30 3600 3600

30S 1 0 9.706 0 21 0 139.56

1M 0 84.092 5.44 30 30 3600 3600

1M 1 224.826 10.806 16.6 13.2 0 188.04

5M 0 84.092 5.44 30 30 3600 3600

5M 1 99.7 11.44 15.4 17.6 333 417.72

15M 0 84.092 5.44 30 30 3600 3600

15M 1 138.398 9.81 20.8 15.6 923.28 876
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A.1.2 Control.

Table 9. Data from Aust’s Control Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q Pen Time - I Pen Time - Q

1 93.840 4.680 30 30 3600.000 3600.000

2 85.600 5.830 30 30 3600.000 3600.000

3 89.880 5.860 30 30 3600.000 3600.000

4 81.380 4.980 30 30 3600.000 3600.000

5 69.760 5.850 30 30 3600.000 3600.000

A.1.3 30 Second.

Cells that contain a “-” indicate that no data was collected due to failure of either the

scan or exploit.

Table 10. Data from Aust’s 30 Second Interval Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q Pen Time - I Pen Time - Q

1 - 9.74 - 20 - 3.16

2 - 15.04 - 23 - -

3 - 6.46 - 21 - 3.15

4 - 8.8 - 15 - 2.15

5 - 8.49 - 26 - 3.17

A.1.4 1 Minute.

Cells that contain a “-” indicate that no data was collected due to failure of the exploit.

Table 11. Data from Aust’s 1 Minute Interval Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q Pen Time - I Pen Time - Q

1 449.31 8.49 30 28 - 3.06

2 68.76 10.61 10 17 - 3.15

3 160.78 11.83 13 6 - 3.17

4 155.62 11.56 11 6 - 3.15

5 289.66 11.54 19 9 - 3.14
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A.1.5 5 Minutes.

Table 12. Data from Aust’s 5 Minute Interval Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q Pen Time - I Pen Time - Q

1 154.050 8.670 23 27 5.150 6.160

2 89.600 11.250 15 13 6.160 7.170

3 89.150 8.190 15 28 6.140 7.160

4 74.900 19.110 10 11 5.160 7.150

5 90.800 9.980 14 9 5.140 7.170

A.1.6 15 Minutes.

Table 13. Data from Aust’s 15 Minute Interval Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q Pen Time - I Pen Time - Q

1 111.770 11.600 15 9 16.290 6.160

2 155.550 9.700 28 21 15.180 16.290

3 78.130 8.210 9 24 16.170 16.160

4 192.470 9.380 26 16 14.140 17.170

5 154.070 10.160 26 8 15.160 17.220

A.2 Validation Results

This section contains the data from all of the validation experiments. For the sake of

brevity, all column headers in this section are described here. Trial indicates the mutation

interval in use for the corresponding data in Appendix A.2.1 and the index of the associated

data for all other tables. Mutator indicates if the data was gathered with RHMs active on

the network. A 1 indicates that RHM was active, a 0 indicates that it was not. Scan - I

refers to the number of seconds required to complete an intense scan. Scan - Q refers to

the number of seconds required to complete a quick scan. Hosts - I refers to the number of

perceived hosts based upon intense scan results. Hosts - Q refers to the number of perceived

hosts based upon quick scan results. As discussed in Section 2.6, a primary limitation of

PHM was that it did not allow connections to persist beyond one mutation. RHM added

this capability, which still provides a defensive benefit against scans but does not terminate

connections after each mutation. This tradeoff means that the “Pen Time” data collected
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by Aust has no counterpart in validation trials since adversary connections were never

terminated.

A.2.1 Averages.

Table 14. Averages from Validation Experiments

Trial Mutator Scan - I Scan - Q Hosts - I Hosts - Q

30S 0 901.2 71.1 30 30

30S 1 0 39.5 0 18.5

1M 0 901.2 71.1 30 30

1M 1 0 44 0 20.4

5M 0 901.2 71.1 30 30

5M 1 0 50.9 0 22

15M 0 901.2 71.1 30 30

15M 1 724.3 56.6 22 22

A.2.2 Control.

Table 15. Data from Control Validation Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q

1 868 71 30 30

2 861 73 30 30

3 933 72 30 30

4 858 69 30 30

5 876 70 30 30

6 954 73 30 30

7 954 73 30 30

8 933 72 30 30

9 902 70 30 30

10 873 68 30 30
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A.2.3 30 Second.

Table 16. Data from 30 Second Interval Validation Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q

1 120 120 0 0

2 120 120 0 0

3 120 31 0 19

4 120 120 0 0

5 120 120 0 0

6 120 120 0 0

7 120 120 0 0

8 120 120 0 0

9 120 120 0 0

10 120 48 0 18

A.2.4 1 Minute.

Table 17. Data from 1 Minute Interval Validation Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q

1 240 55 0 21

2 240 34 0 17

3 240 64 0 27

4 240 56 0 24

5 240 41 0 18

6 240 33 0 22

7 240 28 0 16

8 240 46 0 21

9 240 43 0 21

10 240 40 0 17
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A.2.5 5 Minutes.

Table 18. Data from 5 Minute Interval Validation Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q

1 1200 51 0 21

2 1200 50 0 23

3 1200 50 0 23

4 1200 47 0 23

5 1200 35 0 19

6 1200 37 0 17

7 1200 75 0 27

8 1200 53 0 23

9 1200 42 0 18

10 1200 69 0 26

A.2.6 15 Minutes.

Table 19. Data from 15 Minute Interval Validation Experiments

Trial Scan - I Scan - Q Hosts - I Hosts - Q

1 781 45 21 19

2 771 51 24 21

3 751 49 21 20

4 915 53 22 22

5 796 73 23 27

6 892 95 25 23

7 662 44 23 25

8 308 53 17 23

9 883 63 26 23

10 484 40 18 17
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Appendix B. QoS Study Results

B.1 FTP

Due to the inability of FTP to establish a connection based upon IP address, no mean-

ingful test data was gathered. The entire FTP exchange conducted in mutator trials is

included in this section. The “No.” column indicates the frame number. “Source” and

“Destination” show the source IP address of the client and server. “Protocol” indicates the

protocol associated with a given frame. “Length” states the length of a frame in bytes.

“Info” provides an overview of the data transmitted in a frame.
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Figure 44. Full FTP Stream
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B.2 HTTP

This section contains the data from all QoS experiments for HTTP. For the sake of

brevity, all column headers in this section are described here. Trial indicates the index

associated with the data in a row. Latency shows the average time in milliseconds that

it took information from the client to reach the server for the trial. RTT indicates the

amount of time in seconds from when a packet was sent by the server to the client and the

receipt of the ACK from the client. Duration shows the length of the connection in seconds.

BPSS represents the throughput of the client in Bits per second (bps). BPSR indicates the

throughput of the server in bps. PacketsS displays the number of packets sent by the client

during the transmission. PacketsR reports the number of packets sent by the server during

the transmission.

ACKlostR displays the number of packets lost by the server during a trial. DupACKR

shows the count of duplicate ACKS received during a trial. RetransR, FRetransR, and

SRetransR indicate the amount of retransmissions, fast retransmissions, and spurious re-

transmissions by the server in a trial, respectively. OutOfOrderR indicates the number of

packets received out of order in a single trial. WinUpdateR reports the number of window

updates sent in a transmission. WinFullR shows how many times a notification that the

TCP receive window was at capacity were send in a single trial.
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B.2.1 Control.

Figure 45. Histograms of HTTP QoS Control Data
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Table 20. HTTP Control QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR

1 5.00E-05 0.0189 62.198 6750 6474 37 5054

2 4.00E-05 0.01902 62.188 6751 6474 37 5028

3 5.00E-05 0.02069 62.187 6751 6475 37 5052

4 4.00E-05 0.01912 62.177 6752 6475 37 5012

5 4.00E-05 0.01907 62.175 6753 6476 37 5042

6 4.00E-05 0.01765 62.178 6753 6476 37 5156

7 4.00E-05 0.01908 62.201 6750 6473 37 5025

8 5.00E-05 0.01909 62.194 6750 6474 37 5027

9 5.00E-05 0.01895 62.178 6752 6475 37 5038

10 4.00E-05 0.01903 62.194 6751 6474 37 5042

11 5.00E-05 0.01891 62.194 6751 6474 37 5042

12 4.00E-05 0.02046 62.194 6751 6474 37 5042

13 3.00E-05 0.0193 62.194 6751 6474 37 5042

14 5.00E-05 0.01892 62.194 6751 6474 37 5042

15 5.00E-05 0.01889 62.194 6751 6474 37 5042

16 5.00E-05 0.0191 62.194 6751 6474 37 5042

17 5.00E-05 0.0189 62.194 6751 6474 37 5042

18 5.00E-05 0.01878 62.194 6751 6474 37 5042

19 5.00E-05 0.01891 62.194 6751 6474 37 5042

20 5.00E-05 0.01896 62.194 6751 6474 37 5042

21 4.00E-05 0.01907 62.194 6751 6474 37 5042

22 4.00E-05 0.02093 62.194 6751 6474 37 5042

23 4.00E-05 0.01894 62.194 6751 6474 37 5042

24 3.00E-05 0.01752 62.194 6751 6474 37 5042

25 4.00E-05 0.01919 62.194 6751 6474 37 5042

26 5.00E-05 0.01895 62.194 6751 6474 37 5042

27 4.00E-05 0.01892 62.194 6751 6474 37 5042

28 4.00E-05 0.01907 62.194 6751 6474 37 5042

29 5.00E-05 0.01891 62.194 6751 6474 37 5042

30 5.00E-05 0.01897 62.194 6751 6474 37 5042
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Table 21. HTTP Control Lost, Duplicate, Retransmitted, and Out of Order Packets

Trial ACKlostR DupACKR RetransR FRetransR SRetransR OutOfOrderR

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

10 0 0 0 0 0 0

11 0 0 0 0 0 0

12 0 0 0 0 0 0

13 0 0 0 0 0 0

14 0 0 0 0 0 0

15 0 0 0 0 0 0

16 0 0 0 0 0 0

17 0 0 0 0 0 0

18 0 0 0 0 0 0

19 0 0 0 0 0 0

20 0 0 0 0 0 0

21 0 0 0 0 0 0

22 0 0 0 0 0 0

23 0 0 0 0 0 0

24 0 0 0 0 0 0

25 0 0 0 0 0 0

26 0 0 0 0 0 0

27 0 0 0 0 0 0

28 0 0 0 0 0 0

29 0 0 0 0 0 0

30 0 0 0 0 0 0
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Table 22. HTTP Control Window Update Data

Trial WinUpdateR WinFullR

1 1108 15

2 1126 0

3 1108 15

4 1119 0

5 1111 15

6 1118 0

7 1128 0

8 1103 15

9 1101 20

10 1109 14

11 1116 3

12 1086 1

13 1102 17

14 1112 7

15 1109 14

16 1109 12

17 1111 4

18 1085 106

19 1116 3

20 1108 13

21 1124 0

22 1112 4

23 1109 15

24 985 4

25 1107 15

26 1119 2

27 1114 4

28 1105 14

29 1119 0

30 1110 15
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B.2.2 Mutator.

Figure 46. Histograms of HTTP QoS Mutator Data
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Table 23. HTTP Mutator QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR

1 0.00187 0.00315 66.409 6606 7304 69 71

2 0.00183 0.00335 64.666 6786 7515 69 71

3 0.00239 0.00686 83.13 5282 5848 69 71

4 0.00239 0.00686 67.23 5282 7254 69 72

5 0.00171 0.00259 59.452 7378 8162 69 71

6 0.00198 0.00397 69.08 6353 7043 69 71

7 0.00208 0.00511 72.571 6050 6687 69 71

8 0.00171 0.00257 59.647 7354 8133 69 71

9 0.00206 0.00413 71.713 6121 6774 69 71

10 0.00186 0.00353 65.034 6747 7484 69 71

11 0.00178 0.00265 65.034 6747 7484 69 71

12 0.00178 0.00306 65.034 6747 7484 69 71

13 0.00187 0.00373 65.034 6747 7484 69 71

14 0.0018 0.00349 65.034 6747 7484 69 71

15 0.0018 0.00304 65.034 6747 7484 69 71

16 0.00183 0.0037 65.034 6747 7484 69 71

17 0.0018 0.00327 65.034 6747 7484 69 71

18 0.00179 0.00353 65.034 6747 7484 69 71

19 0.00179 0.003 65.034 6747 7484 69 71

20 0.00179 0.00301 65.034 6747 7484 69 71

21 0.00176 0.00291 65.034 6747 7484 69 71

22 0.00179 0.00311 65.034 6747 7484 69 71

23 0.00213 0.00405 65.034 6747 7484 69 71

24 0.00177 0.00401 65.034 6747 7484 69 71

25 0.00181 0.00338 65.034 6747 7484 69 71

26 0.00178 0.00316 65.034 6747 7484 69 71

27 0.00189 0.00385 65.034 6747 7484 69 71

28 0.0018 0.00315 65.034 6747 7484 69 71

29 0.00181 0.00366 65.034 6747 7484 69 71

30 0.00178 0.00382 65.034 6747 7484 69 71
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Table 24. HTTP Mutator Lost, Duplicate, Retransmitted, and Out of Order Packets

Trial ACKlostR DupACKR RetransR FRetransR SRetransR OutOfOrderR

1 0 22073 3568 3435 0 324

2 1 22987 3613 3485 0 343

3 0 26067 3491 3288 0 441

4 0 25003 3734 3592 0 328

5 1 21671 3619 3510 0 293

6 0 23740 3624 3474 0 369

7 1 25110 3446 3273 0 425

8 0 21778 3590 3481 0 306

9 0 23824 3539 3379 0 391

10 0 23108 3678 3543 0 333

11 0 20797 3597 3483 0 295

12 1 22130 3766 3641 0 315

13 0 23525 3599 3463 0 350

14 0 23620 3669 3537 0 303

15 0 22259 3663 3538 0 325

16 0 23856 3984 3852 0 296

17 0 23062 3691 3565 0 300

18 1 23712 3820 3695 0 324

19 0 22146 3723 3601 0 315

20 0 22130 3739 3617 0 328

21 1 21322 3731 3611 0 329

22 0 21993 3931 3805 0 333

23 0 22225 3848 3659 0 406

24 2 24871 3912 3780 0 309

25 1 23098 3694 3565 0 326

26 0 22215 3775 3656 0 294

27 0 23866 3689 3546 0 366

28 0 22297 4023 3884 0 292

29 0 24268 3798 3672 0 309

30 1 24349 3829 3699 0 306
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Table 25. HTTP Mutator Window Update Data

Trial WinUpdateR WinFullR

1 160 0

2 115 0

3 196 0

4 103 0

5 119 0

6 106 0

7 97 0

8 119 0

9 89 0

10 105 0

11 202 0

12 196 0

13 130 0

14 125 0

15 151 0

16 103 0

17 123 0

18 148 0

19 144 0

20 165 0

21 196 0

22 193 0

23 234 0

24 107 0

25 136 0

26 170 0

27 119 0

28 177 0

29 100 0

30 106 0
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B.2.3 T-test results.

1 [ 1 ] ”Latency”

2

3 Two Sample t−t e s t

4

5 data : Control and Mutation

6 t = −57.229 , df = 58 , p−value < 2 .2 e−16

7 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

8 99 percent con f idence i n t e r v a l :

9 −0.001928181 −0.001756697

10 sample e s t imate s :

11 mean o f x mean o f y

12 3.248836 e−05 1.874927 e−03

13

14 [ 1 ] ”RTT”

15

16 Two Sample t−t e s t

17

18 data : Control and Mutation

19 t = 69 .219 , df = 58 , p−value < 2 .2 e−16

20 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

21 99 percent con f idence i n t e r v a l :

22 0.01482287 0.01600918

23 sample e s t imate s :

24 mean o f x mean o f y

25 0.019073117 0.003657091

26

27 [ 1 ] ”Duration”

28

29 Two Sample t−t e s t

30

31 data : Control and Mutation

32 t = −5.0827 , df = 58 , p−value = 4.161 e−06

33 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

34 99 percent con f idence i n t e r v a l :

120



35 −5.783837 −1.806545

36 sample e s t imate s :

37 mean o f x mean o f y

38 62.19161 65.98680

39

40 [ 1 ] ”Throughput”

41

42 Two Sample t−t e s t

43

44 data : Control and Mutation

45 t = −12.483 , df = 58 , p−value < 2 .2 e−16

46 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

47 99 percent con f idence i n t e r v a l :

48 −1118.6378 −725.2289

49 sample e s t imate s :

50 mean o f x mean o f y

51 6474.200 7396.133

52

53 [ 1 ] ”Dropped Packets ”

54

55 Two Sample t−t e s t

56

57 data : Control and Mutation

58 t = −1215 , df = 58 , p−value < 2 .2 e−16

59 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

60 99 percent con f idence i n t e r v a l :

61 −5015.804 −4993.863

62 sample e s t imate s :

63 mean o f x mean o f y

64 −5006.866667 −2.033333

B.3 IMAP

This section contains the data from all QoS experiments for IMAP. For the sake of

brevity, all column headers in this section are described here. Trial indicates the index

associated with the data in a row. Latency shows the average time in milliseconds that
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it took information from the client to reach the server for the trial. RTT indicates the

amount of time in seconds from when a packet was sent by the server to the client and the

receipt of the ACK from the client. Duration shows the length of the connection in seconds.

BPSS represents the throughput of the client in bps. BPSR indicates the throughput

of the server in bps. PacketsS displays the number of packets sent by the client during

the transmission. PacketsR reports the number of packets sent by the server during the

transmission. PktsDrop indicates the sum of all dropped packets during one trial.

B.3.1 Control.

Figure 47. Histograms of IMAP QoS Control Data
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Table 26. IMAP Control QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR PktsDrop

1 0.00168 0.00083 122.027 380 380 50 50 0

2 0.00142 7.00E-04 122.024 380 380 50 50 0

3 0.00141 0.00068 122.023 380 380 50 50 0

4 0.00145 0.00074 122.026 380 380 50 50 0

5 0.00169 8.00E-04 122.025 380 380 50 50 0

6 0.00134 0.00064 122.025 380 380 50 50 0

7 0.00114 0.00053 122.025 380 380 50 50 0

8 0.0011 0.00056 122.025 380 380 50 50 0

9 0.0011 0.00055 122.026 380 380 50 50 0

10 0.00115 0.00053 122.024 380 380 50 50 0

11 0.00148 0.00077 122.024 380 380 50 50 0

12 0.0013 0.00065 122.024 380 380 50 50 0

13 0.00238 0.00119 122.024 380 380 50 50 0

14 0.00149 0.00071 122.024 380 380 50 50 0

15 0.00154 0.00075 122.024 380 380 50 50 0

16 0.00118 0.00058 122.024 380 380 50 50 0

17 0.00154 0.00075 122.024 380 380 50 50 0

18 0.00141 0.00066 122.024 380 380 50 50 0

19 0.00144 0.00071 122.024 380 380 50 50 0

20 0.00118 0.00054 122.024 380 380 50 50 0

21 0.00157 0.00075 122.024 380 380 50 50 0

22 0.00119 0.00059 122.024 380 380 50 50 0

23 0.00132 0.00068 122.024 380 380 50 50 0

24 0.00238 0.00119 122.024 380 380 50 50 0

25 0.0014 0.00071 122.024 380 380 50 50 0

26 0.00106 0.00053 122.024 380 380 50 50 0

27 0.00108 0.00055 122.024 380 380 50 50 0

28 0.0012 0.00056 122.024 380 380 50 50 0

29 0.00124 0.00063 122.024 380 380 50 50 0

30 0.00135 0.00064 122.024 380 380 50 50 0
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B.3.2 Mutator.

Figure 48. Histograms of IMAP QoS Mutator Data
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Table 27. IMAP Mutator QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR PktsDrop

1 0.00425 0.00203 122.025 380 380 50 50 0

2 0.00414 0.00213 121.99 380 380 50 50 0

3 0.00308 0.00153 122.009 380 380 50 50 0

4 0.00281 0.50282 106.986 382 414 50 46 4

5 0.00344 0.0017 122.003 380 380 50 50 0

6 0.00484 0.00234 122.019 380 380 50 50 0

7 0.00389 0.00195 122.003 380 376 50 49 1

8 0.00432 0.00207 122.02 380 380 50 50 0

9 0.00281 0.50282 106.986 382 414 50 46 4

10 0.0042 0.00218 122.022 380 380 50 50 0

11 0.00304 0.00156 122.022 380 380 50 50 0

12 0.00326 0.00164 122.022 380 380 50 50 0

13 0.00308 0.00154 122.022 380 380 50 50 0

14 0.00303 0.00152 122.022 380 380 50 50 0

15 0.00293 0.0015 122.022 380 380 50 50 0

16 0.00343 0.00172 122.022 380 380 50 50 0

17 0.00289 0.00148 122.022 380 380 50 50 0

18 0.00374 0.00193 122.022 380 380 50 50 0

19 0.0033 0.00166 122.022 380 380 50 50 0

20 0.00322 0.00166 122.022 380 380 50 50 0

21 0.00356 0.00182 122.022 380 380 50 50 0

22 0.00314 0.0016 122.022 380 380 50 50 0

23 0.00289 0.00148 122.022 380 380 50 50 0

24 0.00313 0.00161 122.022 380 380 50 50 0

25 0.02052 0.00175 122.022 380 380 50 50 0

26 0.00336 0.0017 122.022 380 380 50 50 0

27 0.00306 0.00156 122.022 380 380 50 50 0

28 0.00312 0.00161 122.022 380 380 50 50 0

29 0.0034 0.00172 122.022 380 380 50 50 0

30 0.00317 0.00162 122.022 380 380 50 50 0
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B.3.3 T-test results.

1 [ 1 ] ”Latency”

2

3 Two Sample t−t e s t

4

5 data : Control and Mutation

6 t = −4.4067 , df = 58 , p−value = 4.593 e−05

7 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

8 99 percent con f idence i n t e r v a l :

9 −0.004108429 −0.001013097

10 sample e s t imate s :

11 mean o f x mean o f y

12 0.001407335 0.003968098

13

14 [ 1 ] ”RTT”

15

16 Two Sample t−t e s t

17

18 data : Control and Mutation

19 t = −1.4843 , df = 58 , p−value = 0.1431

20 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

21 99 percent con f idence i n t e r v a l :

22 −0.09626904 0.02736483

23 sample e s t imate s :

24 mean o f x mean o f y

25 0.0006895218 0.0351416282

26

27 [ 1 ] ”Duration”

28

29 Two Sample t−t e s t

30

31 data : Control and Mutation

32 t = 1 .4468 , df = 58 , p−value = 0.1533

33 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

34 99 percent con f idence i n t e r v a l :
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35 −0.8470467 2.8620049

36 sample e s t imate s :

37 mean o f x mean o f y

38 122.0244 121.0169

39

40 [ 1 ] ”Throughput”

41

42 Two Sample t−t e s t

43

44 data : Control and Mutation

45 t = −1.3442 , df = 58 , p−value = 0.1841

46 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

47 99 percent con f idence i n t e r v a l :

48 −6.360270 2.093604

49 sample e s t imate s :

50 mean o f x mean o f y

51 380.0000 382.1333

52

53 [ 1 ] ”Dropped Packets ”

54

55 Two Sample t−t e s t

56

57 data : Control and Mutation

58 t = −1.6075 , df = 58 , p−value = 0.1134

59 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

60 99 percent con f idence i n t e r v a l :

61 −0.7970266 0.1970266

62 sample e s t imate s :

63 mean o f x mean o f y

64 0 .0 0 .3

B.4 POP

This section contains the data from all QoS experiments for POP. For the sake of

brevity, all column headers in this section are described here. Trial indicates the index

associated with the data in a row. Latency shows the average time in milliseconds that it
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took information from the client to reach the server for the trial. RTT indicates the amount

of time in seconds from when a packet was sent by the server to the client and the receipt

of the ACK from the client. Duration shows the length of the connection in seconds. BPSS

represents the throughput of the client in bps. BPSR indicates the throughput of the server

in bps. PacketsS displays the number of packets sent by the client during the transmission.

PacketsR reports the number of packets sent by the server during the transmission.

B.4.1 Control.

The result of one dropped packet in each trial for POP control experiments occurred

because some of the messages sent were larger than the standard Ethernet frame size of

1518 Bytes. Specifically, the server key exchange initialization was 1714 Bytes. From the

server perspective, this packet was not broken up into multiple packets but on the client

packet captures, it appeared as two packets. This means that no packets were dropped by

the control trials and the calculated average is misleading. The POP connection did not

omit any data as TCP has built-in safeguards to handle dropped packets.
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Figure 49. Histograms of POP QoS Control Data
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Table 28. POP Control QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR PktsDrop

1 0.0016 0.00092 120.011 296 292 33 32 1

2 0.00113 0.00062 120.012 296 292 33 32 1

3 0.00137 0.00077 120.011 296 292 33 32 1

4 0.0014 0.00082 120.011 296 292 33 32 1

5 0.00113 0.00064 120.01 296 292 33 32 1

6 0.00154 0.00094 120.009 288 284 31 30 1

7 0.00133 8.00E-04 120.011 296 292 33 32 1

8 0.0011 0.00065 120.011 296 292 33 32 1

9 0.00119 0.00076 120.01 296 292 33 32 1

10 0.00181 0.00115 120.009 296 292 33 32 1

11 0.0017 0.00112 120.009 296 292 33 32 1

12 0.00105 0.00066 120.009 296 292 33 32 1

13 0.00105 0.00062 120.009 296 292 33 32 1

14 0.00133 8.00E-04 120.009 296 292 33 32 1

15 0.00181 0.00112 120.009 296 292 33 32 1

16 0.00102 0.00061 120.009 296 292 33 32 1

17 0.00144 0.00081 120.009 296 292 33 32 1

18 0.00144 0.00084 120.009 296 292 33 32 1

19 0.00156 0.00102 120.009 296 292 33 32 1

20 0.00122 0.00063 120.009 296 292 33 32 1

21 0.00107 0.00063 120.009 296 292 33 32 1

22 0.00137 0.00078 120.009 296 292 33 32 1

23 0.00099 6.00E-04 120.009 296 292 33 32 1

24 0.00136 0.00071 120.009 296 292 33 32 1

25 0.00126 0.00059 120.009 296 292 33 32 1

26 0.0013 0.00069 120.009 296 292 33 32 1

27 0.0013 8.00E-04 120.009 296 292 33 32 1

28 0.00166 0.00081 120.009 296 292 33 32 1

29 0.00164 0.001 120.009 296 292 33 32 1

30 0.00118 7.00E-04 120.009 296 292 33 32 1
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B.4.2 Mutator.

The result of one dropped packet in each trial for POP mutator experiments occurred

because some of the messages sent were larger than the standard Ethernet frame size of

1518 Bytes. Specifically, the server key exchange initialization was 1714 Bytes. From the

server perspective, this packet was not broken up into multiple packets but on the client

packet captures, it appeared as two packets. This means that no packets were dropped by

the control trials and the calculated average is misleading. The POP connection did not

omit any data as TCP has built-in safeguards to handle dropped packets.

Figure 50. Histograms of POP QoS Mutator Data
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Table 29. POP Mutator QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR PktsDrop

1 0.02657 0.00339 120.003 300 313 34 33 1

2 0.02732 0.88682 104.976 316 357 37 33 4

3 0.02832 0.00246 119.99 296 313 33 33 0

4 0.02836 0.00267 120.007 296 313 33 33 0

5 0.02889 0.00308 119.988 296 313 33 33 0

6 0.02979 0.00289 100.011 296 347 33 28 5

7 0.02751 0.88645 104.972 316 357 37 33 4

8 0.02733 0.88628 104.976 316 357 37 33 4

9 0.02828 0.00304 120.002 300 317 34 34 0

10 0.02776 0.00254 119.991 296 313 33 33 0

11 0.0276 0.00226 119.991 296 313 33 33 0

12 0.02678 0.00195 119.991 296 313 33 33 0

13 0.02811 0.00238 119.991 296 313 33 33 0

14 0.02746 0.00214 119.991 296 313 33 33 0

15 0.02652 0.00187 119.991 296 313 33 33 0

16 0.01242 0.02072 119.991 296 313 33 33 0

17 0.02756 0.00228 119.991 296 313 33 33 0

18 0.02713 0.00181 119.991 296 313 33 33 0

19 0.02757 0.00196 119.991 296 313 33 33 0

20 0.02735 0.00212 119.991 296 313 33 33 0

21 0.02646 0.00187 119.991 296 313 33 33 0

22 0.02725 0.83208 119.991 296 313 33 33 0

23 0.02707 0.00193 119.991 296 313 33 33 0

24 0.02767 0.00227 119.991 296 313 33 33 0

25 0.02739 0.00241 119.991 296 313 33 33 0

26 0.02651 0.00213 119.991 296 313 33 33 0

27 0.02746 0.00217 119.991 296 313 33 33 0

28 0.02701 0.00175 119.991 296 313 33 33 0

29 0.02776 0.00239 119.991 296 313 33 33 0

30 0.02696 0.00231 119.991 296 313 33 33 0
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B.4.3 T-test results.

1 [ 1 ] ”Latency”

2

3 Two Sample t−t e s t

4

5 data : Control and Mutation

6 t = −184.96 , df = 57 , p−value < 2 .2 e−16

7 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

8 99 percent con f idence i n t e r v a l :

9 −0.02653919 −0.02578531

10 sample e s t imate s :

11 mean o f x mean o f y

12 0.001345462 0.027507710

13

14 [ 1 ] ”RTT”

15

16 Two Sample t−t e s t

17

18 data : Control and Mutation

19 t = −2.18 , df = 57 , p−value = 0.0334

20 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

21 99 percent con f idence i n t e r v a l :

22 −0.27027763 0.02704714

23 sample e s t imate s :

24 mean o f x mean o f y

25 0.000787852 0.122403094

26

27 [ 1 ] ”Duration”

28

29 Two Sample t−t e s t

30

31 data : Control and Mutation

32 t = 2 .1077 , df = 58 , p−value = 0.03939

33 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

34 99 percent con f idence i n t e r v a l :
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35 −0.5759626 4.9456326

36 sample e s t imate s :

37 mean o f x mean o f y

38 120.0094 117.8246

39

40 [ 1 ] ”Throughput”

41

42 Two Sample t−t e s t

43

44 data : Control and Mutation

45 t = −10.189 , df = 58 , p−value = 1.541 e−14

46 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

47 99 percent con f idence i n t e r v a l :

48 −33.97309 −19.89358

49 sample e s t imate s :

50 mean o f x mean o f y

51 291.7333 318.6667

52

53 [ 1 ] ”Dropped Packets ”

54

55 Two Sample t−t e s t

56

57 data : Control and Mutation

58 t = 1 .4841 , df = 58 , p−value = 0.1432

59 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

60 99 percent con f idence i n t e r v a l :

61 −0.3178222 1.1178222

62 sample e s t imate s :

63 mean o f x mean o f y

64 1 .0 0 .6

B.5 RTP

This section contains the data from all QoS experiments for RTP. For the sake of

brevity, all column headers in this section are described here. Trial indicates the index

associated with the data in a row. Jitter represents the average of the difference between
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the forwarding delay of two consecutive packets in the same stream in seconds for each trial.

Duration shows the length of the connection in seconds. BPS represents the throughput

of the client in bps. PacketsS displays the number of packets sent by the client during

the transmission. PacketsR reports the number of packets sent by the server during the

transmission. Figure 51 indicates that a negative number of packets were dropped for some

trials. This is a result of a limitation in the semi-automated method used to gather RTP

data as the packet captures did not always begin with sufficient lead time before data was

sent.

B.5.1 Control.

Figure 51. Histograms of RTP QoS Control Data
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Table 30. RTP Control QoS Data

Trial MaxJitterR jitterR Duration BPS PacketsS PacketsR Dropped

1 0.264 0.227 107.014703 1566 108 108 0

2 0.264 0.227 119.025531 1564 120 120 0

3 0.264 0.227 120.026317 1564 121 121 0

4 0.264 0.227 120.026437 1564 121 121 0

5 0.264 0.227 110.024517 1565 111 111 0

6 0.264 0.227 118.025383 1564 119 119 0

7 0.264 0.227 120.02717 1564 121 121 0

8 0.264 0.227 119.027055 1564 120 120 0

9 0.264 0.227 137.246447 1400 128 128 0

10 0.264 0.227 140.682634 1377 120 132 -12

11 0.264 0.227 140.682634 1377 120 132 -12

12 0.264 0.227 140.682634 1377 120 132 -12

13 0.264 0.227 140.682634 1377 120 132 -12

14 0.264 0.227 140.682634 1377 120 132 -12

15 0.264 0.227 140.682634 1377 120 132 -12

16 0.264 0.227 140.682634 1377 120 132 -12

17 0.264 0.227 140.682634 1377 120 132 -12

18 0.264 0.227 140.682634 1377 120 132 -12

19 0.264 0.227 140.682634 1377 120 132 -12

20 0.264 0.227 140.682634 1377 120 132 -12

21 0.264 0.227 140.682634 1377 120 132 -12

22 0.264 0.227 140.682634 1377 120 132 -12

23 0.264 0.227 140.682634 1377 120 132 -12

24 0.264 0.227 140.682634 1377 120 132 -12

25 0.264 0.227 140.682634 1377 120 132 -12

26 0.264 0.227 140.682634 1377 120 132 -12

27 0.264 0.227 140.682634 1377 120 132 -12

28 0.264 0.227 140.682634 1377 120 132 -12

29 0.264 0.227 140.682634 1377 120 132 -12

30 0.264 0.227 140.682634 1377 120 132 -12
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B.5.2 Mutator.

Figure 52. Histograms of RTP QoS Mutator Data
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Table 31. RTP Mutator QoS Data

Trial MaxJitterR jitterR Duration BPS PacketsS PacketsR Dropped

1 1.053 0.355 109.012512 1566 110 110 0

2 1.053 0.355 118.02527 1583 188 122 66

3 1.053 0.355 104.019535 1566 127 105 22

4 1.053 0.355 99.998782 1709 121 109 12

5 1.053 0.355 113.016961 1565 114 114 0

6 1.053 0.355 111.997591 1565 125 113 12

7 1.053 0.355 111.997824 1676 120 120 0

8 1.053 0.355 141.674235 1230 123 112 11

9 1.053 0.355 112.018064 1460 107 107 0

10 1.053 0.355 109.111131 1554 121 109 12

11 1.053 0.355 109.111131 1554 121 109 12

12 1.053 0.355 109.111131 1554 121 109 12

13 1.053 0.355 109.111131 1554 121 109 12

14 1.053 0.355 109.111131 1554 121 109 12

15 1.053 0.355 109.111131 1554 121 109 12

16 1.053 0.355 109.111131 1554 121 109 12

17 1.053 0.355 109.111131 1554 121 109 12

18 1.053 0.355 109.111131 1554 121 109 12

19 1.053 0.355 109.111131 1554 121 109 12

20 1.053 0.355 109.111131 1554 121 109 12

21 1.053 0.355 109.111131 1554 121 109 12

22 1.053 0.355 109.111131 1554 121 109 12

23 1.053 0.355 109.111131 1554 121 109 12

24 1.053 0.355 109.111131 1554 121 109 12

25 1.053 0.355 109.111131 1554 121 109 12

26 1.053 0.355 109.111131 1554 121 109 12

27 1.053 0.355 109.111131 1554 121 109 12

28 1.053 0.355 109.111131 1554 121 109 12

29 1.053 0.355 109.111131 1554 121 109 12

30 1.053 0.355 109.111131 1554 121 109 12
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B.5.3 T-test results.

1 [ 1 ] ”Max J i t t e r ”

2 [ 1 ] ”T t e s t e r r o r . I s your data e s s e n t i a l l y constant ?”

3 [ 1 ] ”Mean J i t t e r ”

4 [ 1 ] ”T t e s t e r r o r . I s your data e s s e n t i a l l y constant ?”

5 [ 1 ] ”Duration”

6

7 Two Sample t−t e s t

8

9 data : Control and Mutation

10 t = 10 .124 , df = 58 , p−value = 1.959 e−14

11 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

12 99 percent con f idence i n t e r v a l :

13 17.48243 29.96319

14 sample e s t imate s :

15 mean o f x mean o f y

16 134.1593 110.4365

17

18 [ 1 ] ”Throughput”

19

20 Two Sample t−t e s t

21

22 data : Control and Mutation

23 t = −6.1149 , df = 58 , p−value = 8.804 e−08

24 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

25 99 percent con f idence i n t e r v a l :

26 −178.10276 −70.03057

27 sample e s t imate s :

28 mean o f x mean o f y

29 1427.733 1551.800

30

31 [ 1 ] ”Dropped Packets ”

32

33 Two Sample t−t e s t

34
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35 data : Control and Mutation

36 t = −9.1971 , df = 58 , p−value = 6.28 e−13

37 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

38 99 percent con f idence i n t e r v a l :

39 −26.95218 −14.84782

40 sample e s t imate s :

41 mean o f x mean o f y

42 −8.4 12 .5

B.6 SMTP

This section contains the data from all QoS experiments for SMTP. For the sake of

brevity, all column headers in this section are described here. Trial indicates the index

associated with the data in a row. Latency shows the average time in milliseconds that it

took information from the client to reach the server for the trial. RTT indicates the amount

of time in seconds from when a packet was sent by the server to the client and the receipt

of the ACK from the client. Duration shows the length of the connection in seconds. BPSS

represents the throughput of the client in bps. BPSR indicates the throughput of the server

in bps. PacketsS displays the number of packets sent by the client during the transmission.

PacketsR reports the number of packets sent by the server during the transmission.
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B.6.1 Control.

Figure 53. Histograms of SMTP QoS Control Data
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Table 32. SMTP Control QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR PktsDrop

1 0.06203 0.01271 120.023 227 228 45 45 0

2 0.06121 0.01324 120.024 227 228 45 45 0

3 0.06058 0.01266 120.024 227 228 45 45 0

4 0.0612 0.01254 120.023 227 228 45 45 0

5 0.06037 0.0125 120.024 227 228 45 45 0

6 0.06091 0.01234 120.025 227 228 45 45 0

7 0.06272 0.01318 120.023 227 228 45 45 0

8 0.06004 0.01185 120.022 227 228 45 45 0

9 0.06157 0.01288 120.023 227 228 45 45 0

10 0.06219 0.01229 120.022 227 228 45 45 0

11 0.06098 0.0124 120.022 227 228 45 45 0

12 0.06075 0.01309 120.022 227 228 45 45 0

13 0.0602 0.01211 120.022 227 228 45 45 0

14 0.06027 0.01216 120.022 227 228 45 45 0

15 0.06111 0.01186 120.022 227 228 45 45 0

16 0.06034 0.01192 120.022 227 228 45 45 0

17 0.06078 0.01294 120.022 227 228 45 45 0

18 0.05964 0.01233 120.022 227 228 45 45 0

19 0.06248 0.01306 120.022 227 228 45 45 0

20 0.05826 0.01206 120.022 227 228 45 45 0

21 0.06038 0.01253 120.022 227 228 45 45 0

22 0.06016 0.01244 120.022 227 228 45 45 0

23 0.06098 0.01232 120.022 227 228 45 45 0

24 0.06021 0.01249 120.022 227 228 45 45 0

25 0.06018 0.0123 120.022 227 228 45 45 0

26 0.06193 0.01243 120.022 227 228 45 45 0

27 0.06119 0.01269 120.022 227 228 45 45 0

28 0.06159 0.0133 120.022 227 228 45 45 0

29 0.06121 0.01233 120.022 227 228 45 45 0

30 0.06129 0.01198 120.022 227 228 45 45 0
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B.6.2 Mutator.

Figure 54. Histograms of SMTP QoS Mutator Data
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Table 33. SMTP Mutator QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR PktsDrop

1 0.06534 0.01469 120.018 227 228 45 45 0

2 0.0632 0.01439 120.004 227 228 45 45 0

3 0.07002 0.90205 104.995 207 216 40 36 4

4 0.0642 0.0143 120.015 227 228 45 45 0

5 0.06485 0.01479 120.018 227 228 45 45 0

6 0.0688 0.90224 104.978 207 216 40 36 4

7 0.06439 0.01451 120.019 227 228 45 45 0

8 0.07127 0.90421 104.966 207 216 40 36 4

9 0.0696 0.90325 104.988 207 216 40 36 4

10 0.06532 0.01497 120.02 227 228 45 45 0

11 0.06182 0.01401 120.02 227 228 45 45 0

12 0.06362 0.01435 120.02 227 228 45 45 0

13 0.06363 0.01379 120.02 227 228 45 45 0

14 0.06477 0.01384 120.02 227 228 45 45 0

15 0.06357 0.01533 120.02 227 228 45 45 0

16 0.06265 0.01359 120.02 227 228 45 45 0

17 0.06482 0.01594 120.02 227 228 45 45 0

18 0.06405 0.01324 120.02 227 228 45 45 0

19 0.06327 0.01497 120.02 227 228 45 45 0

20 0.06421 0.01399 120.02 227 228 45 45 0

21 0.06188 0.01315 120.02 227 228 45 45 0

22 0.0643 0.01504 120.02 227 228 45 45 0

23 0.06286 0.01325 120.02 227 228 45 45 0

24 0.06244 0.0129 120.02 227 228 45 45 0

25 0.06389 0.01325 120.02 227 228 45 45 0

26 0.08138 0.01406 120.02 227 228 45 45 0

27 0.06136 0.01244 120.02 227 228 45 45 0

28 0.0636 0.01436 120.02 227 228 45 45 0

29 0.06423 0.01472 120.02 227 228 45 45 0

30 0.06207 0.01374 120.02 227 228 45 45 0
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B.6.3 T-test results.

1 [ 1 ] ”Latency”

2

3 Two Sample t−t e s t

4

5 data : Control and Mutation

6 t = −5.6527 , df = 58 , p−value = 5.056 e−07

7 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

8 99 percent con f idence i n t e r v a l :

9 −0.006111195 −0.002196831

10 sample e s t imate s :

11 mean o f x mean o f y

12 0.06089210 0.06504611

13

14 [ 1 ] ”RTT”

15

16 Two Sample t−t e s t

17

18 data : Control and Mutation

19 t = −2.1415 , df = 58 , p−value = 0.03645

20 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

21 99 percent con f idence i n t e r v a l :

22 −0.26957080 0.02927669

23 sample e s t imate s :

24 mean o f x mean o f y

25 0.01249851 0.13264557

26

27 [ 1 ] ”Duration”

28

29 Two Sample t−t e s t

30

31 data : Control and Mutation

32 t = 2 .116 , df = 58 , p−value = 0.03865

33 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

34 99 percent con f idence i n t e r v a l :
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35 −0.5194891 4.5364688

36 sample e s t imate s :

37 mean o f x mean o f y

38 120.0223 118.0138

39

40 [ 1 ] ”Throughput”

41

42 Two Sample t−t e s t

43

44 data : Control and Mutation

45 t = 2 .1122 , df = 58 , p−value = 0.03898

46 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

47 99 percent con f idence i n t e r v a l :

48 −0.4174168 3.6174168

49 sample e s t imate s :

50 mean o f x mean o f y

51 228 .0 226 .4

52

53 [ 1 ] ”Dropped Packets ”

54

55 Two Sample t−t e s t

56

57 data : Control and Mutation

58 t = −2.1122 , df = 58 , p−value = 0.03898

59 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

60 99 percent con f idence i n t e r v a l :

61 −1.2058056 0.1391389

62 sample e s t imate s :

63 mean o f x mean o f y

64 0.0000000 0.5333333

B.7 SSH

This section contains the data from all QoS experiments for SSH. For the sake of

brevity, all column headers in this section are described here. Trial indicates the index

associated with the data in a row. Latency shows the average time in milliseconds that it
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took information from the client to reach the server for the trial. RTT indicates the amount

of time in seconds from when a packet was sent by the server to the client and the receipt

of the ACK from the client. Duration shows the length of the connection in seconds. BPSS

represents the throughput of the client in bps. BPSR indicates the throughput of the server

in bps. PacketsS displays the number of packets sent by the client during the transmission.

PacketsR reports the number of packets sent by the server during the transmission.

B.7.1 Control.

The result of one dropped packet in each trial for SSH control experiments occurred

because some of the messages sent were larger than the standard ethernet frame size of

1518 Bytes. Specifically, the server key exchange initialization was 1714 Bytes. From the

server perspective, this packet was not broken up into multiple packets but on the client

packet captures, it appeared as two packets. This means that no packets were dropped by

the control trials and the calculated average is misleading. The SSH connection did not

omit any data as TCP has built-in safeguards to handle dropped packets.
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Figure 55. Histograms of SSH QoS Control Data
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Table 34. SSH Control QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR PktsDrop

1 0.01874 0.00073 148.945 3125 3121 582 581 1

2 0.00186 0.00082 132.385 3377 3373 562 561 1

3 0.00184 0.00099 140.238 3116 3112 546 545 1

4 0.00192 0.00084 134.196 3296 3292 555 554 1

5 0.0019 0.00096 131.572 3369 3365 558 557 1

6 0.00194 0.00085 132.547 3337 3333 556 555 1

7 0.0017 0.00081 136.171 3256 3252 558 557 1

8 0.00174 0.00082 134.715 3283 3279 556 555 1

9 0.00188 0.00085 132.117 3348 3344 556 555 1

10 0.0017 0.00087 129.615 3371 3367 546 545 1

11 0.0031 0.00088 129.615 3371 3367 546 545 1

12 0.00883 0.00102 129.615 3371 3367 546 545 1

13 0.00203 0.00078 129.615 3371 3367 546 545 1

14 0.00203 0.00082 129.615 3371 3367 546 545 1

15 0.00171 0.00085 129.615 3371 3367 546 545 1

16 0.00165 0.0011 129.615 3371 3367 546 545 1

17 0.00175 0.00086 129.615 3371 3367 546 545 1

18 0.00174 8.00E-04 129.615 3371 3367 546 545 1

19 0.00198 0.00083 129.615 3371 3367 546 545 1

20 0.00183 0.00085 129.615 3371 3367 546 545 1

21 0.00804 0.00094 129.615 3371 3367 546 545 1

22 0.00202 0.00083 129.615 3371 3367 546 545 1

23 0.00175 0.00084 129.615 3371 3367 546 545 1

24 0.00181 0.00083 129.615 3371 3367 546 545 1

25 0.00177 0.00083 129.615 3371 3367 546 545 1

26 0.00202 0.00086 129.615 3371 3367 546 545 1

27 0.00169 0.00085 129.615 3371 3367 546 545 1

28 0.00185 0.00099 129.615 3371 3367 546 545 1

29 0.00182 0.00088 129.615 3371 3367 546 545 1

30 0.00172 0.00086 129.615 3371 3367 546 545 1

149



B.7.2 Mutator.

The single negative result for dropped packets as shown in Figure 56 occurred during

trial 5. In this trial, the packet capture of the client terminated out-of-sync with the server.

This experimental error accounts for the negative result. In reality, zero packets were

dropped.

Figure 56. Histograms of SSH QoS Mutator Data

150



Table 35. SSH Mutator QoS Data

Trial Latency RTT Duration BPSS BPSR PacketsS PacketsR PktsDrop

1 0.00233 0.00112 128.592 3310 3310 532 532 0

2 0.00249 0.00117 129.839 3295 3295 534 534 0

3 0.00302 0.00115 135.189 3254 3254 546 546 0

4 0.00242 0.00197 133.387 3335 3325 556 554 2

5 0.00218 0.00107 128.011 3287 3295 520 521 -1

6 0.00273 0.00115 127.689 3284 3284 519 519 0

7 0.00248 0.00108 126.591 3229 3230 498 498 0

8 0.00262 0.00117 137.37 3313 3247 560 560 0

9 0.00217 0.00106 137.371 3274 3275 566 566 0

10 0.00753 0.00097 138.291 3170 3171 545 545 0

11 0.00217 0.00107 138.291 3170 3171 545 545 0

12 0.0025 0.00119 138.291 3170 3171 545 545 0

13 0.00236 0.00108 138.291 3170 3171 545 545 0

14 0.00233 0.00107 138.291 3170 3171 545 545 0

15 0.00285 0.00101 138.291 3170 3171 545 545 0

16 0.00264 0.00096 138.291 3170 3171 545 545 0

17 0.00211 0.00102 138.291 3170 3171 545 545 0

18 0.00355 0.00142 138.291 3170 3171 545 545 0

19 0.0021 0.00108 138.291 3170 3171 545 545 0

20 0.00218 0.00102 138.291 3170 3171 545 545 0

21 0.00214 0.00111 138.291 3170 3171 545 545 0

22 0.00226 0.00115 138.291 3170 3171 545 545 0

23 0.00262 0.00113 138.291 3170 3171 545 545 0

24 0.00457 0.00101 138.291 3170 3171 545 545 0

25 0.00249 0.00096 138.291 3170 3171 545 545 0

26 0.00294 0.001 138.291 3170 3171 545 545 0

27 0.00234 0.00108 138.291 3170 3171 545 545 0

28 0.00218 0.00115 138.291 3170 3171 545 545 0

29 0.0023 0.00115 138.291 3170 3171 545 545 0

30 0.00234 0.00111 138.291 3170 3171 545 545 0
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B.7.3 T-test results.

1 [ 1 ] ”Latency”

2

3 Two Sample t−t e s t

4

5 data : Control and Mutation

6 t = −5.6527 , df = 58 , p−value = 5.056 e−07

7 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

8 99 percent con f idence i n t e r v a l :

9 −0.006111195 −0.002196831

10 sample e s t imate s :

11 mean o f x mean o f y

12 0.06089210 0.06504611

13

14 [ 1 ] ”RTT”

15

16 Two Sample t−t e s t

17

18 data : Control and Mutation

19 t = −2.1415 , df = 58 , p−value = 0.03645

20 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

21 99 percent con f idence i n t e r v a l :

22 −0.26957080 0.02927669

23 sample e s t imate s :

24 mean o f x mean o f y

25 0.01249851 0.13264557

26

27 [ 1 ] ”Duration”

28

29 Two Sample t−t e s t

30

31 data : Control and Mutation

32 t = 2 .116 , df = 58 , p−value = 0.03865

33 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

34 99 percent con f idence i n t e r v a l :
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35 −0.5194891 4.5364688

36 sample e s t imate s :

37 mean o f x mean o f y

38 120.0223 118.0138

39

40 [ 1 ] ”Throughput”

41

42 Two Sample t−t e s t

43

44 data : Control and Mutation

45 t = 2 .1122 , df = 58 , p−value = 0.03898

46 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

47 99 percent con f idence i n t e r v a l :

48 −0.4174168 3.6174168

49 sample e s t imate s :

50 mean o f x mean o f y

51 228 .0 226 .4

52

53 [ 1 ] ”Dropped Packets ”

54

55 Two Sample t−t e s t

56

57 data : Control and Mutation

58 t = −2.1122 , df = 58 , p−value = 0.03898

59 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s not equal to 0

60 99 percent con f idence i n t e r v a l :

61 −1.2058056 0.1391389

62 sample e s t imate s :

63 mean o f x mean o f y

64 0.0000000 0.5333333
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Appendix C. Experiment Scripts

C.1 Mutator Code

C.1.1 Mutator PlebeNet.py.

1 # Copyright (C) 2011 Nippon Telegraph and Telephone Corporat ion .

2 #

3 # Licensed under the Apache License , Vers ion 2 .0 ( the ” L icense ”) ;

4 # you may not use t h i s f i l e except in compliance with the L icense .

5 # You may obta in a copy o f the L icense at

6 #

7 # http ://www. apache . org / l i c e n s e s /LICENSE−2.0

8 #

9 # Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

10 # d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an ”AS IS” BASIS ,

11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or

12 # impl i ed .

13 # See the L icense f o r the s p e c i f i c language governing pe rmi s s i ons and

14 # l im i t a t i o n s under the L icense .

15

16 from ryu . base import app manager

17 from ryu . c o n t r o l l e r import o fp event

18 from ryu . c o n t r o l l e r . handler import CONFIG DISPATCHER, MAIN DISPATCHER

19 from ryu . c o n t r o l l e r . handler import s e t e v c l s

20 from ryu . o fp ro to import o fp ro t o v1 3

21 from ryu . l i b . packet import packet

22 from ryu . l i b . packet import e the rne t

23 from ryu . l i b . packet import tcp

24 from ryu . l i b . packet import udp

25 from ryu . l i b . packet import ipv4

26 from ryu . l i b . packet import arp

27 from ryu . l i b . packet import icmp

28 from ryu . l i b . packet import e th e r t ype s

29 from ryu import c f g

30 from Mutator import Mutator #Import Mutator c l a s s

154



31 from ActiveConnect ion import ActiveConnect ion

32 import l ogg ing

33 import schedu le

34

35 #Set up Logging

36 l ogg e r = logg ing . getLogger ( ’ SDNMutator ’ )

37 hd l r = logg ing . F i l eHandler ( ’ SDNMutator . log ’ )

38 fo rmatte r = logg ing . Formatter ( ’%( asct ime ) s %(levelname ) s %(message ) s ’ )

39 hd l r . setFormatter ( fo rmatte r )

40 l ogg e r . addHandler ( hd l r )

41 l ogg e r . s e tLeve l ( l ogg ing .DEBUG)

42

43 c l a s s Mutat ionContro l l e r ( app manager .RyuApp) :

44 OFP VERSIONS = [ o fp ro t o v1 3 .OFP VERSION]

45

46 de f i n i t ( s e l f , ∗ args , ∗∗kwargs ) :

47 super ( Mutat ionContro l ler , s e l f ) . i n i t (∗ args , ∗∗kwargs )

48

49 s e l f . mac to port = {}

50 s e l f . RIP VIP = {}

51 s e l f . VIP RIP = {}

52 s e l f . a c t i v e s = [ ]

53 s e l f .m = 0 # Track mutation number

54

55 s e l f . l o gg e r = logg ing . getLogger ( ’ SDNMutator . Logger ’ )

56 s e l f . l o gg e r . i n f o ( ’ Creat ing in s t ance o f Logger ’ )

57

58 # Set up argument par s ing

59 CONF = c fg .CONF

60 CONF. r e g i s t e r o p t s ( [

61 c f g . IntOpt ( ’ f requency ’ , d e f au l t =60, he lp=( ’Mutation rate , in

seconds ’ ) ) ,

62 c f g . ListOpt ( ’ networks ’ , d e f au l t=None , he lp=( ’ F i r s t three o c t e t s o f

IPv4 address ranges to mutate . Comma separated . ’ ) ) ,

63 c f g . IntOpt ( ’ timeout ’ , d e f au l t =240 , he lp=( ’ Seconds un t i l f low
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timeout ’ ) ) ] )

64 s e l f . l o gg e r . i n f o ( ’ Arguments r e c e i v ed : %s ’ , CONF. l i s t a l l s e c t i o n s ( ) )

65 networks = CONF. networks

66 f requency = CONF. f requency

67 s e l f . t imeout = CONF. timeout

68 p r i n t ( f requency )

69 p r i n t ( networks )

70 p r i n t (”Adding mutations to s chedu l e r . ” )

71 s e l f . mutator = Mutator ( networks )

72

73 schedu le . every ( f requency ) . seconds . do ( s e l f . t r iggerMutat ion , s e l f .

mutator , networks , False , s e l f .m)

74 schedu le . run cont inuous ly ( )

75 p r i n t (” Scheduler a c t i v e . ” )

76

77 de f t r i gge rMutat ion ( s e l f , mutator , networks , f i r s t , m in ) :

78 m in = m in + 1

79 mutations = mutator . mutate ( networks , f i r s t , m in )

80 s e l f . RIP VIP = mutations [ 0 ]

81 s e l f . VIP RIP = mutations [ 1 ]

82 s e l f . a c t i v e s = mutations [ 2 ]

83

84 # <ed i to r−f o l d desc=”Mutation p ro c e s s i ng”>

85 de f add f low ( s e l f , datapath , p r i o r i t y , match , ac t ions , b u f f e r i d=None ) :

86 o fp ro to = datapath . o fp ro to

87 par s e r = datapath . o f p r o t o pa r s e r

88 timeout = s e l f . t imeout

89

90 i n s t = [ par s e r . OFPInstruct ionActions ( o fp ro to .OFPIT APPLY ACTIONS,

a c t i on s ) ]

91 i f b u f f e r i d :

92 mod = par s e r .OFPFlowMod( datapath=datapath , i d l e t imeou t=timeout ,

hard t imeout=timeout , b u f f e r i d=bu f f e r i d ,

93 p r i o r i t y=p r i o r i t y , match=match ,

94 i n s t r u c t i o n s=i n s t )
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95 e l s e :

96 mod = par s e r .OFPFlowMod( datapath=datapath , p r i o r i t y=p r i o r i t y ,

i d l e t imeou t=timeout , hard t imeout=timeout ,

97 match=match , i n s t r u c t i o n s=i n s t )

98 datapath . send msg (mod)

99

100 de f addActive ( s e l f , s r c r i p , d s t r i p , s r c v ip , ds t v ip , sPort , dPort ,

p ro to co l ) :

101 conn = ActiveConnect ion ( s r c r i p , s r c v ip , d s t r i p , ds t v ip , ds t v ip ,

sPort , dPort , p ro to co l )

102

103 p r in t ”Adding new entry to Act ives ”

104 i f not any ( s t r ( x ) == s t r ( conn ) f o r x in s e l f . a c t i v e s ) :

105 s e l f . a c t i v e s . append ( ActiveConnect ion ( s r c r i p , s r c v ip , d s t r i p ,

ds t v ip , ds t v ip , sPort , dPort , p ro to co l ) )

106 i f p r o to co l == ”TCP” :

107 s e l f . a c t i v e s . append ( ActiveConnect ion ( d s t r i p , ds t v ip , s r c r i p

, s r c v ip , s r c v ip , dPort , sPort , p ro to co l ) )

108 e l s e :

109 s e l f . l o gg e r . i n f o (” Dupl icate entry in s e l f . a c t i v e s avoided ”)

110

111 de f a dd r e s s t r a n s l a t i o n ( s e l f , RIP , VIP) :

112 i f RIP not in s e l f . RIP VIP :

113 re turn Fal se

114 e l i f VIP not in s e l f . VIP RIP :

115 re turn Fal se

116 e l s e :

117 re turn True

118

119 #t r a n s l a t e RIPs & VIPs

120 de f lookupAddresses ( s e l f , s r c r i p , d s t v i p ) :

121 t r a n s l a t i o n = {}

122

123 # Check a c t i v e s t ab l e be f o r e s ea r ch ing mappings

124 conn = ActiveConnect ion . f i nd by rS r c pDs t ( s r c r i p , d s t v i p )
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125

126 i f conn i s None :

127 s e l f . mutator . p r i n tAc t i v e s ( )

128 p r i n t s t r ( conn )

129 p r i n t ”No entry found . Search RIP :VIP tab l e . ”

130

131 # Catch i f the re doesn ’ t e x i s t a t r a n s l a t i o n in RIP :VIP

132 i f not s e l f . a dd r e s s t r a n s l a t i o n ( s r c r i p , d s t v i p ) :

133 p r in t ” Trans la t i on does not e x i s t . ”

134 return

135 e l s e :

136 s r c v i p = s e l f . RIP VIP [ s r c r i p ]

137 d s t r i p = s e l f . VIP RIP [ d s t v i p ]

138 e l s e :

139 p r i n t ”Entry found in a c t i v e s . ”

140 s r c r i p = conn . rSrc

141 s r c v i p = conn . vSrc

142 d s t r i p = conn . rDst

143 d s t v i p = conn . pDst

144

145 t r a n s l a t i o n . update ({ ’ s r c r i p ’ : s r c r i p })

146 t r a n s l a t i o n . update ({ ’ s r c v ip ’ : s r c v i p })

147 t r a n s l a t i o n . update ({ ’ d s t r i p ’ : d s t r i p })

148 t r a n s l a t i o n . update ({ ’ d s t v ip ’ : d s t v i p })

149 p r in t t r a n s l a t i o n

150 return t r a n s l a t i o n

151 # </ed i to r−f o ld>

152

153 # <ed i to r−f o l d desc=”Packet t r a n s l a t i o n methods”>

154 de f arpTrans la t ion ( s e l f , arpPkt , dpid , parser , out port , o fproto , msg ,

datapath , i n po r t ) :

155 arpPkt = arpPkt [ 0 ]

156

157 map = s e l f . lookupAddresses ( arpPkt . s r c i p , arpPkt . d s t i p )

158

158



159 # Catch i f the re doesn ’ t e x i s t a t r a n s l a t i o n in RIP :VIP

160 # i f not s e l f . a dd r e s s t r a n s l a t i o n (map[ ” s r c r i p ” ] , map[ ” d s t v i p ” ] ) :

161 # return

162

163 s e l f . logPacket (”ARP” , map[ ” s r c r i p ” ] , map[ ” d s t r i p ” ] , map[ ” s r c v i p ” ] ,

map[ ” d s t v i p ” ] )

164

165 a c t i on s = [ par s e r . OFPActionSetField ( arp tpa=map[ ” d s t r i p ” ] ) , pa r s e r .

OFPActionSetField ( arp spa=map[ ” s r c v i p ” ] ) ,

166 par s e r . OFPActionOutput ( out por t ) ]

167

168 # i n s t a l l a f low to avoid the c o n t r o l l e r having to dec ide

169 i f out por t != o fp ro to .OFPP FLOOD:

170 match = par s e r .OFPMatch( i n po r t=in por t , e th type=0x806 , arp tpa=

map[ ” d s t v i p ” ] , arp spa=map[ ” s r c r i p ” ] )

171 # v e r i f y i f we have a va l i d bu f f e r i d , i f yes avoid to send both

flow mod & packet out

172 i f msg . b u f f e r i d != o fp ro to .OFP NO BUFFER:

173 s e l f . add f low ( datapath , 1 , match , ac t ions , msg . b u f f e r i d )

174 return

175 e l s e :

176 s e l f . add f low ( datapath , 1 , match , a c t i on s )

177 s e l f . addActive (map[ ” s r c r i p ” ] , map[ ” d s t r i p ” ] , map[ ” s r c v i p ” ] , map

[ ” d s t v i p ” ] , ”ARP”)

178 s e l f . packet out (msg , o fproto , parser , datapath , in por t , a c t i on s )

179

180 de f icmpTrans lat ion ( s e l f , ipv4Pkt , icmpPkt , dpid , parser , out port ,

o fproto , msg , datapath , i n po r t ) :

181 ipv4Pkt = ipv4Pkt [ 0 ]

182 icmpPkt = icmpPkt [ 0 ]

183

184 map = s e l f . lookupAddresses ( ipv4Pkt . src , ipv4Pkt . dst )

185

186 # Catch i f the re i s no t r a n s l a t i o n

187 # i f not s e l f . a dd r e s s t r a n s l a t i o n (map[ ” s r c r i p ” ] , map[ ” d s t v i p ” ] ) :
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188 # return

189

190 s e l f . logPacket (”ICMP” , map[ ” s r c r i p ” ] , map[ ” d s t r i p ” ] , map[ ” s r c v i p ” ] ,

map[ ” d s t v i p ” ] )

191

192 a c t i on s = [ par s e r . OFPActionSetField ( i pv4 d s t=map[ ” d s t r i p ” ] ) , pa r s e r .

OFPActionSetField ( i p v 4 s r c=map[ ” s r c v i p ” ] ) ,

193 par s e r . OFPActionOutput ( out por t ) ]

194

195 # i n s t a l l a f low to avoid the c o n t r o l l e r having to dec ide

196 i f out por t != o fp ro to .OFPP FLOOD:

197 match = par s e r .OFPMatch( i n po r t=in por t , e th type=0x800 , i pv4 d s t=

map[ ” d s t v i p ” ] , i p v 4 s r c=map[ ” s r c r i p ” ] ,

198 i p p ro t o =1, icmpv4 code=icmpPkt . code ,

icmpv4 type=icmpPkt . type )

199 # v e r i f y a va l i d bu f f e r i d , i f yes avoid to send both flow mod &

packet out

200 i f msg . b u f f e r i d != o fp ro to .OFP NO BUFFER:

201 s e l f . add f low ( datapath , 1 , match , ac t ions , msg . b u f f e r i d )

202

203 return

204 e l s e :

205 s e l f . add f low ( datapath , 1 , match , a c t i on s )

206 p r i n t ” h i t ”

207 #s e l f . addActive (map[ ” s r c r i p ” ] , map[ ” d s t r i p ” ] , map[ ” s r c v i p ” ] ,

map[ ” d s t v i p ” ] , ”ICMP”)

208 s e l f . packet out (msg , o fproto , parser , datapath , in por t , a c t i on s )

209

210 de f ipv4Trans la t i on ( s e l f , ipv4Pkt in , tcpPkt in , udpPkt in , dpid , parser ,

out port , o fproto , msg , datapath , i n po r t ) :

211 ipv4Pkt = ipv4Pkt in [ 0 ]

212 map = s e l f . lookupAddresses ( ipv4Pkt . src , ipv4Pkt . dst )

213 match = par s e r .OFPMatch( i n po r t=in por t , e th type=0x800 , i pv4 d s t=map

[ ” d s t v i p ” ] , i p v 4 s r c=map[ ” s r c r i p ” ] ) # Defau l t match ru l e

214
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215 # Catch i f the re e x i s t s a t r a n s l a t i o n

216 # i f not s e l f . a dd r e s s t r a n s l a t i o n (map[ ” s r c r i p ” ] , map[ ” d s t v i p ” ] ) :

217 # return

218

219 #TCP Packet Proce s s ing

220 try :

221 tcpPkt = tcpPkt in [ 0 ]

222 p r i n t ”TCP: ” + s t r ( ipv4Pkt . s r c ) + ” :” + s t r ( tcpPkt . s r c p o r t ) + ” ,

” + s t r ( ipv4Pkt . dst ) + ” :” + s t r ( tcpPkt . d s t po r t )

223 i f tcpPkt . h a s f l a g s ( tcp .TCP SYN, tcp .TCP ACK) :

224 s e l f . addActive (map[ ” s r c r i p ” ] , map[ ” d s t r i p ” ] , map[ ” s r c v i p ” ] ,

map[ ” d s t v i p ” ] ,

225 tcpPkt . s r c po r t , tcpPkt . ds t por t , ”TCP”)

226 match = par se r .OFPMatch( i n po r t=in por t , e th type=0x800 ,

i pv4 d s t=map[ ” d s t v i p ” ] , i p v 4 s r c=map[ ” s r c r i p ” ] ,

227 i p p ro t o =6, t c p s r c=tcpPkt . s r c po r t ,

t cp d s t=tcpPkt . d s t po r t )

228 e l i f tcpPkt . h a s f l a g s ( tcp .TCP FIN , tcp .TCP ACK) :

229 sender = ActiveConnect ion . f i n d by rS r c p o r t (map[ ” s r c r i p ” ] ,

tcpPkt . s r c po r t , tcp . d s t po r t )

230 r e c e i v e r = ActiveConnect ion . f i n d by rS r c p o r t (map[ ” d s t r i p ” ] ,

tcpPkt . ds t por t , tcpPkt . s r c p o r t )

231 p r in t ”\n\n\nHIT\n\n\n”

232 s e l f . l o gg e r . i n f o (” Received FINACK on :\n” + sender + ”\n” +

r e c e i v e r )

233 match = par se r .OFPMatch( i n po r t=in por t , e th type=0x800 ,

i pv4 d s t=map[ ” d s t v i p ” ] , i p v 4 s r c=map[ ” s r c r i p ” ] ,

234 i p p ro t o =6, t c p s r c=tcpPkt . s r c po r t ,

t cp d s t=tcpPkt . d s t po r t )

235 # e l i f tcpPkt . h a s f l a g s ( tcp .TCP RST) :

236 # Do Something

237 except IndexError :

238 p r i n t ”No TCP in f o detec ted ”

239 except :

240 r a i s e
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241

242 #UDP Packet Proce s s ing

243 try :

244 udpPkt = udpPkt in [ 0 ]

245 p r i n t ”UDP: ” + s t r ( ipv4Pkt . s r c ) + ” :” + s t r ( udpPkt . s r c p o r t ) + ”

−> ” + s t r ( ipv4Pkt . dst ) + ” :” + s t r ( udpPkt . d s t po r t )

246 s e l f . addActive (map[ ” s r c r i p ” ] , map[ ” d s t r i p ” ] , map[ ” s r c v i p ” ] , map

[ ” d s t v i p ” ] , udpPkt . s r c po r t , udpPkt . ds t por t , ”UDP”)

247 match = par s e r .OFPMatch( i n po r t=in por t , e th type=0x800 , i pv4 d s t=

map[ ” d s t v i p ” ] , i p v 4 s r c=map[ ” s r c r i p ” ] ,

248 i p p ro t o =17, udp src=udpPkt . s r c po r t ,

udp dst=udpPkt . d s t po r t )

249 except IndexError :

250 p r i n t ”No UDP in f o detec ted ”

251 except :

252 r a i s e

253

254 s e l f . logPacket (” IPv4 ” , map[ ” s r c r i p ” ] , map[ ” d s t r i p ” ] , map[ ” s r c v i p ” ] ,

map[ ” d s t v i p ” ] )

255

256 # Modify IP address f i e l d s o f packet

257 a c t i on s = [ par s e r . OFPActionSetField ( i pv4 d s t=map[ ” d s t r i p ” ] ) , pa r s e r .

OFPActionSetField ( i p v 4 s r c=map[ ” s r c v i p ” ] ) ,

258 par s e r . OFPActionOutput ( out por t ) ]

259

260 # i n s t a l l a f low to avoid the c o n t r o l l e r having to dec ide

261 i f out por t != o fp ro to .OFPP FLOOD:

262 # v e r i f y a va l i d bu f f e r i d , i f yes avoid to send both flow mod &

packet out

263 i f msg . b u f f e r i d != o fp ro to .OFP NO BUFFER:

264 s e l f . add f low ( datapath , 1 , match , ac t ions , msg . b u f f e r i d )

265 return

266 e l s e :

267 s e l f . add f low ( datapath , 1 , match , a c t i on s )

268 s e l f . packet out (msg , o fproto , parser , datapath , in por t , a c t i on s )
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269 # </ed i to r−f o ld>

270

271 de f packet out ( s e l f , msg , o fproto , parser , datapath , in por t , a c t i on s ) :

272 data = None

273

274 i f msg . b u f f e r i d == ofpro to .OFP NO BUFFER:

275 data = msg . data

276

277 out = par s e r . OFPPacketOut ( datapath=datapath , b u f f e r i d=msg . bu f f e r i d ,

278 i n po r t=in por t , a c t i on s=act ions , data=data )

279 datapath . send msg ( out )

280

281 # <ed i to r−f o l d desc=”Event−dr iven methods”>

282 @s e t e v c l s ( o fp event . EventOFPPacketIn , MAIN DISPATCHER)

283 de f pa ck e t i n hand l e r ( s e l f , ev ) :

284 # I f you h i t t h i s you might want to i n c r e a s e the ”mi s s s end l eng th ” o f

your switch

285 i f ev .msg . msg len < ev .msg . t o t a l l e n :

286 s e l f . l o gg e r . debug (” packet truncated : only %s o f %s bytes ” , ev .msg .

msg len , ev .msg . t o t a l l e n )

287

288 ’ ’ ’ General Setup ’ ’ ’

289 msg = ev .msg

290 datapath = msg . datapath

291 o fp ro to = datapath . o fp ro to

292 par s e r = datapath . o f p r o t o pa r s e r

293 i n po r t = msg . match [ ’ i n por t ’ ]

294 dpid = datapath . id

295

296 # Setup the packet

297 pkt = packet . Packet (msg . data )

298

299 # Get the d i f f e r e n t pro toco l s , i f the e x i s t

300 eth = pkt . g e t p r o t o c o l s ( e the rne t . e the rne t ) [

301 0 ] # We know that there w i l l be an e the rne t component , so we can

163



get the f i r s t element

302 icmpPkt = pkt . g e t p r o t o c o l s ( icmp . icmp )

303 ipv4Pkt = pkt . g e t p r o t o c o l s ( ipv4 . ipv4 )

304 arpPkt = pkt . g e t p r o t o c o l s ( arp . arp )

305

306 ’ ’ ’ Bas ic Switch Funct iona l i ty ’ ’ ’

307 i f eth . e ther type == ethe r t ype s .ETH TYPE LLDP:

308 # ignore l l dp packet

309 re turn

310 dst = eth . dst

311 s r c = eth . s r c

312

313 ’ ’ ’ Func t i ona l i t y f o r mac to port mappings ’ ’ ’

314 # Defau l t behavior f o r mac to port mappings

315 s e l f . mac to port . s e t d e f a u l t ( dpid , {})

316

317 # l ea rn a mac address to avoid FLOOD next time .

318 s e l f . mac to port [ dpid ] [ s r c ] = in po r t

319

320 i f dst in s e l f . mac to port [ dpid ] :

321 out por t = s e l f . mac to port [ dpid ] [ dst ]

322 e l s e :

323 out por t = o fpro to .OFPP FLOOD

324

325 ’ ’ ’ Trans la t i on Rules ’ ’ ’

326 i f arpPkt :

327 s e l f . a rpTrans la t ion ( arpPkt , dpid , parser , out port , o fproto , msg ,

datapath , i n po r t )

328 e l i f icmpPkt :

329 s e l f . i cmpTrans lat ion ( ipv4Pkt , icmpPkt , dpid , parser , out port ,

o fproto , msg , datapath , i n po r t )

330 e l i f ipv4Pkt :

331 tcpPkt = pkt . g e t p r o t o c o l s ( tcp . tcp )

332 udpPkt = pkt . g e t p r o t o c o l s (udp . udp )

333 s e l f . i pv4Trans la t i on ( ipv4Pkt , tcpPkt , udpPkt , dpid , parser ,

164



out port , o fproto , msg , datapath , i n po r t )

334 e l s e :

335 a c t i on s = [ par s e r . OFPActionOutput ( out por t ) ]

336

337 # i n s t a l l a f low to avoid packe t in next time

338 i f out por t != o fp ro to .OFPP FLOOD:

339 match = par se r .OFPMatch( i n po r t=in por t , e th d s t=dst )

340 # v e r i f y i f we have a va l i d bu f f e r i d , i f yes avoid to send

both flow mod & packet out

341 i f msg . b u f f e r i d != o fp ro to .OFP NO BUFFER:

342 s e l f . add f low ( datapath , 1 , match , ac t ions , msg . b u f f e r i d )

343 return

344 e l s e :

345 s e l f . add f low ( datapath , 1 , match , a c t i on s )

346 s e l f . packet out (msg , o fproto , parser , datapath , in por t , a c t i on s )

347

348 @s e t e v c l s ( o fp event . EventOFPSwitchFeatures , CONFIG DISPATCHER)

349 de f sw i t c h f e a t u r e s h and l e r ( s e l f , ev ) :

350 datapath = ev .msg . datapath

351 o fp ro to = datapath . o fp ro to

352 par s e r = datapath . o f p r o t o pa r s e r

353

354 # i n s t a l l tab le−miss f low entry

355 #

356 # We sp e c i f y NO BUFFER to max len o f the output ac t i on due to

357 # OVS bug . At t h i s moment , i f we s p e c i f y a l e s s e r number , e . g . ,

358 # 128 , OVS w i l l send Packet−In with i n v a l i d b u f f e r i d and

359 # truncated packet data . In that case , we cannot output packets

360 # c o r r e c t l y . The bug has been f i x ed in OVS v2 . 1 . 0 .

361 match = par s e r .OFPMatch( )

362 a c t i on s = [ par s e r . OFPActionOutput ( o fp ro to .OFPPCONTROLLER,

363 o fp ro to .OFPCMLNOBUFFER) ]

364 s e l f . add f low ( datapath , 0 , match , a c t i on s )

365

366 @s e t e v c l s ( o fp event . EventOFPFlowStatsReply , MAIN DISPATCHER)
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367 de f f l ow s t a t s r e p l y h and l e r ( s e l f , ev ) :

368 f l ows = [ ]

369 f o r s t a t in ev .msg . body :

370 f l ows . append ( ’ t a b l e i d=%s ’

371 ’ du ra t i on s e c=%d dura t i on nsec=%d ’

372 ’ p r i o r i t y=%d ’

373 ’ i d l e t imeou t=%d hard t imeout=%d f l a g s=0x%04x ’

374 ’ cook i e=%d packet count=%d byte count=%d ’

375 ’match=%s i n s t r u c t i o n s=%s ’ %

376 ( s t a t . t ab l e i d ,

377 s t a t . dura t i on sec , s t a t . durat ion nsec ,

378 s t a t . p r i o r i t y ,

379 s t a t . i d l e t imeout , s t a t . hard timeout , s t a t . f l a g s ,

380 s t a t . cookie , s t a t . packet count , s t a t . byte count ,

381 s t a t . match , s t a t . i n s t r u c t i o n s ) )

382 p r in t ( ’ FlowStats : %s ’ , f l ows )

383 # </ed i to r−f o ld>

384

385 # <ed i to r−f o l d desc=”Logging”>

386 de f logPacket ( s e l f , p rotoco l , s r c r i p , s r c v ip , d s t r i p , d s t v i p ) :

387 s e l f . l o gg e r . i n f o ( p ro to co l )

388 s e l f . l o gg e r . i n f o ( ’ src RIP : %s , src VIP : %s ’ , s r c r i p , s r c v i p )

389 s e l f . l o gg e r . i n f o ( ’ dst RIP : %s , dst VIP : %s ’ , d s t r i p , d s t v i p )

390 # </ed i to r−f o ld>

391

392 de f s e n d f l ow s t a t s r e q u e s t ( s e l f , datapath , match ) :

393 ofp = datapath . o fp ro to

394 o f p pa r s e r = datapath . o f p r o t o pa r s e r

395

396 cook i e = cookie mask = 0

397 req = o fp pa r s e r . OFPFlowStatsRequest ( datapath , 0 ,

398 ofp .OFPTT ALL,

399 ofp .OFPP ANY, ofp .OFPGANY,

400 cookie , cookie mask ,

401 match )
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402 datapath . send msg ( req )

C.1.2 Mutator.py.

1 from random import rand int

2 import l ogg ing

3 import l ogg ing . c on f i g

4 from ActiveConnect ion import ActiveConnect ion

5 import ppr int

6

7 #Set up Logging

8 l ogg e r = logg ing . getLogger ( ’ In t e rva l ’ )

9 hd l r = logg ing . F i l eHandler ( ’ I n t e r v a l . log ’ )

10 fo rmatte r = logg ing . Formatter ( ’%( asct ime ) s %(levelname ) s %(message ) s ’ )

11 hd l r . setFormatter ( fo rmatte r )

12 l ogg e r . addHandler ( hd l r )

13 l ogg e r . s e tLeve l ( l ogg ing .DEBUG)

14

15 c l a s s Mutator :

16

17 de f i n i t ( s e l f , ∗ args ) :

18 s e l f . l o gg e r = logg ing . getLogger ( ’ I n t e r v a l . Logger ’ )

19 s e l f . l o gg e r . i n f o ( ’ Creat ing in s t ance o f Logger ’ )

20

21 # # Set up argument par s ing

22 # par s e r = argparse . ArgumentParser ( )

23 # par s e r . add argument(’−−networks ’ , nargs = ’∗ ’)

24 # args = par s e r . pa r s e a r g s ( )

25 # s e l f . l o gg e r . i n f o ( ’ Arguments r e c e i v ed : %s ’ , a rgs )

26 s e l f . mac to port = {}

27 s e l f . RIP VIP = {}

28 s e l f . VIP RIP = {}

29 s e l f . a c t i v e s = [ ]

30

31 # schedu le . every (10) . seconds . do ( s e l f . mutate , networks , False , −1)

32 # schedu le . run cont inuous ly ( )
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33

34 # TODO: Parameter ize hardcoded ranges .

35 de f mutate ( s e l f , networks , f i r s t , mutation ) :

36

37 #Clear t r a n s l a t i o n t ab l e s f o r next mutation

38 s e l f . RIP VIP = {}

39 s e l f . VIP RIP = {}

40

41 s e l f . l o gg e r . i n f o (” Ca l cu l a t ing mutation ” + s t r ( mutation ) )

42

43 p r i n t (” Ca l cu l a t ing mutation ” + s t r ( mutation ) )

44 f o r net in networks :

45

46 exc lude = se t ( ) # Exclude members o f s e t from i n a c t i v e mutations

47 s e l f . RIP VIP [ ” 1 0 . 1 3 . 1 . 1 ” ] = ”10 . 1 3 . 1 . 1 ”

48 s e l f . VIP RIP [ ” 1 0 . 1 3 . 1 . 1 ” ] = ”10 . 1 3 . 1 . 1 ”

49 s e l f . RIP VIP [ ” 1 0 . 1 3 . 1 . 2 ” ] = ”10 . 1 3 . 1 . 2 ”

50 s e l f . VIP RIP [ ” 1 0 . 1 3 . 1 . 2 ” ] = ”10 . 1 3 . 1 . 2 ”

51 s e l f . RIP VIP [ ” 1 0 . 1 3 . 1 . 2 5 5 ” ] = ”10 . 13 . 1 . 2 55”

52 s e l f . VIP RIP [ ” 1 0 . 1 3 . 1 . 2 5 5 ” ] = ”10 . 13 . 1 . 2 55”

53

54 # Mutate Active connec t ions

55 f o r conn in s e l f . a c t i v e s :

56 VIP = s e l f . generateVIP ( net , 11 , 30)

57 r e s u l t s = ActiveConnect ion . f i nd by rDs t ( conn . rDst )

58 f o r entry in r e s u l t s :

59 # May repea t ed ly a s s i gn RIP :VIP mapping i f mu l t ip l e a c t i v e

conns .

60 entry . vDst = VIP

61 s e l f . updateRIPVIP ( entry . rDst , VIP)

62

63 exc lude . add ( conn . rSrc ) # Add to ensure a c t i v e addre s s e s aren ’

t mutated 2x .

64

65 # Mutate i n a c t i v e connect i ons
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66 f o r address in range (3 , 10) :

67 # VIP=RIP f o r f i r s t run to make t e s t i n g e a s i e r .

68 # TODO: Remove from f i n a l implementation .

69 RIP = net + s t r ( address )

70 i f ( f i r s t ) :

71 i f ( net + s t r ( address ) in exc lude ) :

72 cont inue

73 e l s e :

74 VIP = ( net + s t r ( address ) )

75 s e l f . RIP VIP [ net + s t r ( address ) ] = VIP

76 s e l f . VIP RIP [VIP ] = net + s t r ( address )

77 e l s e :

78 i f ( net + s t r ( address ) in exc lude ) :

79 # Ignore a c t i v e conns ; they ’ re c a l c u l a t ed above .

80 cont inue

81 e l s e :

82 VIP = s e l f . generateVIP ( net , 31 , 50)

83 s e l f . updateRIPVIP (RIP , VIP)

84

85 s e l f . l o gg e r . i n f o (”RIP :VIP mappings :\n\n\tRIP\ t \ t :\ t \tVIP\n”+ppr int .

pformat ( s e l f . RIP VIP , indent=1, width=100)+”\n”)

86 s e l f . l o gg e r . i n f o ( s e l f . p r i n tAc t i v e s ( ) )

87 s e l f . l o gg e r . i n f o (”Mutations c a l c u l a t ed f o r networks ”)

88 mutat ionResults = [ s e l f . RIP VIP , s e l f . VIP RIP , s e l f . a c t i v e s , s e l f .

mac to port ]

89 p r i n t (”Done”)

90 return mutat ionResults

91

92 # Check i f candidate VIP i s in use

93 de f VIP used ( s e l f , VIP) :

94 i f VIP in s e l f . RIP VIP or VIP in s e l f . VIP RIP :

95 re turn True

96 e l s e :

97 re turn Fal se

98
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99 # Generate VIP from address pool o f range poo lStar t−poolEnd

100 de f generateVIP ( s e l f , net , poo lStart , poolEnd ) :

101 VIP = net + s t r ( rand int ( poo lStar t , poolEnd ) )

102 whi l e ( s e l f . VIP used (VIP) ) :

103 VIP = net + s t r ( rand int ( poo lStart , poolEnd ) )

104 return VIP

105

106 # Update mutation mappings

107 de f updateRIPVIP ( s e l f , RIP ,VIP) :

108 try :

109 s e l f . RIP VIP [RIP ] = VIP

110 s e l f . VIP RIP [VIP ] = RIP

111 except :

112 s e l f . l o gg e r . f a t a l (”Unable to update RIP :VIP mapping ”)

113 r a i s e

114

115 # Get a c t i v e s t ab l e as s t r i n g .

116 de f p r i n tAc t i v e s ( s e l f ) :

117 a c t i v e s S t r i n g = ”\n\nAct ives Table a f t e r mutation :\ nIndex \ tReal Src \

tV i r tua l Src \ tReal Dst \ tPerce ived Dst \ tV i r tua l Dst \ tSrc Port \

tDst Port \ tPro toco l \n”

118 i = 1

119 f o r conn in s e l f . a c t i v e s :

120 a c t i v e s S t r i n g += ( s t r ( i ) + ”\ t ” + s t r ( conn ) + ”\n”)

121 i = i + 1

122 return a c t i v e s S t r i n g

C.1.3 ActiveConnection.py.

1 from c o l l e c t i o n s import d e f a u l t d i c t

2

3

4 c l a s s ActiveConnect ion :

5 # Pre−index a t t r i b u t e s f o r l a t e r lookup

6 rS r c index = d e f a u l t d i c t ( l i s t )

7 vSrc index = d e f a u l t d i c t ( l i s t )
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8 rDst index = d e f a u l t d i c t ( l i s t )

9 pDst index = d e f a u l t d i c t ( l i s t )

10 vDst index = d e f a u l t d i c t ( l i s t )

11 p ro t o co l i ndex = d e f a u l t d i c t ( l i s t )

12

13 de f i n i t ( s e l f , rSrc , vSrc , rDst , pDst , vDst , sPort , dPort , p ro to co l ) :

14 s e l f . rSrc = rSrc # Real source IP address

15 s e l f . vSrc = vSrc # Vi r tua l source IP address

16 s e l f . rDst = rDst # Real d e s t i n a t i on IP address

17 s e l f . pDst = pDst # Perce ived d e s t i n a t i on IP address o f the connect ion

b/ t rSrc & rDst

18 s e l f . vDst = vDst # Current v i r t u a l IP address f o r new connect i ons

19 s e l f . sPort = sPort # Source port

20 s e l f . dPort = dPort # Dest inat i on port

21 s e l f . p r o to co l = pro to co l # Protoco l in use ( i . e . TCP or UDP)

22 s e l f . f i n = 0 # Number o f FINs r e c e i v ed in connect ion ’ s l i f e t im e (TCP

only )

23

24 # Update i n d i c e s

25 ActiveConnect ion . rS r c index [ rSrc ] . append ( s e l f )

26 ActiveConnect ion . vSrc index [ vSrc ] . append ( s e l f )

27 ActiveConnect ion . rDst index [ rDst ] . append ( s e l f )

28 ActiveConnect ion . pDst index [ pDst ] . append ( s e l f )

29 ActiveConnect ion . vDst index [ vDst ] . append ( s e l f )

30 ActiveConnect ion . p r o t o co l i ndex [ p ro to co l ] . append ( s e l f )

31

32 de f s t r ( s e l f ) :

33 re turn ( s e l f . rSrc + ”\ t ” + s e l f . vSrc + ”\ t ” + s e l f . rDst + ”\ t ” + s e l f

. pDst + ”\ t ” + s e l f . vDst

34 + ”\ t ” + s t r ( s e l f . sPort ) + ”\ t ” + s t r ( s e l f . dPort ) + ”\ t ” +

s e l f . p r o to co l + ”\ t ” + s t r ( s e l f . f i n ) )

35

36 # Search func t i on s f o r a t t r i b u t e s

37 @classmethod

38 de f f i nd by rS r c ( c l s , rSrc ) :
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39 return ActiveConnect ion . rS r c index [ rSrc ]

40

41 @classmethod

42 de f f i nd by rS r c pDs t ( c l s , rSrc , pDst ) :

43 connect ions = ActiveConnect ion . rS r c index [ rSrc ]

44 # This loop MUST never re turn more than one item

45 f o r conn in connect i ons :

46 p r i n t ”Looking f o r ”

47 p r i n t s t r ( conn )

48 i f conn . pDst == pDst :

49 p r i n t ”Found i t ”

50 return conn

51 e l s e :

52 p r i n t (” Connection rSrc %s with pDst %s not found ” , rSrc , pDst

)

53 re turn

54 @classmethod

55 de f f i n d by rS r c p o r t ( c l s , rSrc , sPort , dPort ) :

56 connect ions = ActiveConnect ion . rS r c index [ rSrc ]

57 # This loop MUST never re turn more than one item

58 f o r conn in connect i ons :

59 i f conn . sPort == sPort and conn . dPort == dPort :

60 re turn conn

61 e l s e :

62 p r i n t (” Connection rSrc %s with sPort %d and dPort %d not

found ” , rSrc , sPort , dPort )

63 re turn

64

65 @classmethod

66 de f f i nd by vSr c ( c l s , vSrc ) :

67 re turn ActiveConnect ion . vSrc index [ vSrc ]

68

69 @classmethod

70 de f f i nd by rDs t ( c l s , rDst ) :

71 re turn ActiveConnect ion . rDst index [ rDst ]
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72

73 @classmethod

74 de f f ind by pDst ( c l s , pDst ) :

75 re turn ActiveConnect ion . pDst index [ pDst ]

76

77 @classmethod

78 de f f ind by vDst ( c l s , vDst ) :

79 re turn ActiveConnect ion . vDst index [ vDst ]

80

81 @classmethod

82 de f f i n d by p r o t o c o l ( c l s , p r o to co l ) :

83 re turn ActiveConnect ion . p r o t o co l i ndex [ p ro to co l ]

C.1.4 params.conf.

1 #Parameters f o r PlebeNet te s tbed

2

3 [DEFAULT]

4

5 f requency = 30

6 networks = 1 0 . 1 3 . 1 .

7 timeout = 240

8 #networks = 1 0 . 1 3 . 1 . , 1 0 . 1 3 . 2 . , 1 0 . 1 3 . 3 7 . , 1 0 . 1 3 . 3 .

9 #networks = 1 0 . 1 3 . 1 . , 1 0 . 1 3 . 2 . , 1 0 . 1 3 . 3 7 .

10 #networks = 10 . 1 3 . 3 7 .

C.2 Adversary Scripts

This section contains the scripts used by the Kali adversary to scan and exploit machines

on the network.

1 <ruby>

2

3 de f t im e d i f f ( s t a r t t ime , end time )

4 s e c o n d s d i f f = ( s t a r t t ime − end time ) . t o i . abs

5 hours = s e c o n d s d i f f /3600

6 s e c o n d s d i f f −= hours ∗ 3600
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7 minutes = s e c o n d s d i f f / 60

8 s e c o n d s d i f f −= minutes ∗ 60

9 seconds = s e c o n d s d i f f

10

11 puts ”#{hours . t o s . r j u s t (2 , ’ 0 ’ ) }:#{minutes . t o s . r j u s t (2 , ’ 0 ’ ) }:#{ seconds .

t o s . r j u s t (2 , ’ 0 ’ ) }”

12 end

13

14 #Star t Time

15 s t a r t t ime = Time . now

16

17 #Nmap Scan

18 r un s i n g l e (”db nmap −−min−hostgroup 96 −T4 −A −v −n 10 . 1 3 . 1 . 0 / 24” )

19

20 endTime = Time . now

21

22 puts ” Star t Time : ” + startTime . i n sp e c t

23 puts ”End Time : ” + endTime . i n sp e c t

24 puts ”Total Time : ”

25 t im e d i f f ( startTime , endTime )

1 <ruby>

2

3 de f t im e d i f f ( s t a r t t ime , end time )

4 s e c o n d s d i f f = ( s t a r t t ime − end time ) . t o i . abs

5 hours = s e c o n d s d i f f /3600

6 s e c o n d s d i f f −= hours ∗ 3600

7 minutes = s e c o n d s d i f f / 60

8 s e c o n d s d i f f −= minutes ∗ 60

9 seconds = s e c o n d s d i f f

10

11 puts ”#{hours . t o s . r j u s t (2 , ’ 0 ’ ) }:#{minutes . t o s . r j u s t (2 , ’ 0 ’ ) }:#{ seconds .

t o s . r j u s t (2 , ’ 0 ’ ) }”

12 end

13

14 #Star t Time
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15 s t a r t t ime = Time . now

16

17 #Nmap Scan

18 r un s i n g l e (”db nmap −−min−hostgroup 96 −T4 −n −F 10 . 1 3 . 1 . 0 / 24” )

19

20 endTime = Time . now

21

22 puts ” Star t Time : ” + startTime . i n sp e c t

23 puts ”End Time : ” + endTime . i n sp e c t

24 puts ”Total Time : ”

25 t im e d i f f ( startTime , endTime )

1 <ruby>

2

3 de f t im e d i f f ( s t a r t t ime , end time )

4 s e c o n d s d i f f = ( s t a r t t ime − end time ) . t o i . abs

5 hours = s e c o n d s d i f f /3600

6 s e c o n d s d i f f −= hours ∗ 3600

7 minutes = s e c o n d s d i f f / 60

8 s e c o n d s d i f f −= minutes ∗ 60

9 seconds = s e c o n d s d i f f

10

11 puts ”#{hours . t o s . r j u s t (2 , ’ 0 ’ ) }:#{minutes . t o s . r j u s t (2 , ’ 0 ’ ) }:#{ seconds .

t o s . r j u s t (2 , ’ 0 ’ ) }”

12 end

13

14 #Star t Timer

15

16 r un s i n g l e (” use e xp l o i t /windows/smb/ms08 067 netapi ”)

17 r un s i n g l e (” s e t PAYLOAD windows/meterprete r / b ind tcp ”)

18 r un s i n g l e (” s e t LHOST 10 . 1 3 . 2 . 5 ” )

19 r un s i n g l e (” s e t RPORT 445”)

20

21 puts ”Enter RHOST:”

22 ta r g e t = ge t s

23 attack = ” s e t RHOST ” +ta rg e t
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24 puts attack

25 r un s i n g l e ( at tack )

26

27 r un s i n g l e (” s e t SMBPIPE BROWSER”)

28 startTime = Time . now

29 r un s i n g l e (” e xp l o i t ”)

30 r un s i n g l e (” e x i t ”)

31 endTime = Time . now

32

33 puts ” Star t Time : ” + startTime . i n sp e c t

34 puts ”End Time : ” + endTime . i n sp e c t

35 puts ”Total Time : ”

36 t im e d i f f ( startTime , endTime )

C.3 Legitimate User Scripts

C.3.1 SSH.

Send ssh.sh contains the script open, maintain, and close a SSH connection to a specified

target.

1 #!/bin /bash

2 f o r i in ‘ seq 1 20 ‘ ;

3 do

4 date

5 l s

6 s l e e p 6

7 done

C.3.2 IMAP.

imap script.sh contains the script to retrieve content from the IMAP server.

1 #!/bin / sh

2

3 HOST=$1

4 (
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5 echo open ”$HOST 143”

6 s l e ep 1

7 echo ”? LOGIN starbuck@sdn . l o c a l Password !123”

8 s l e ep 1

9 echo ”? LIST INBOX ∗”

10 s l e ep 10

11 echo ”? SELECT INBOX”

12 s l e ep 10

13 echo ”? LIST INBOX ∗”

14 s l e ep 10

15 echo ”? SELECT INBOX”

16 s l e ep 10

17 echo ”? LIST INBOX ∗”

18 s l e ep 10

19 echo ”? SELECT INBOX”

20 s l e ep 10

21 echo ”? LIST INBOX ∗”

22 s l e ep 10

23 echo ”? SELECT INBOX”

24 s l e ep 10

25 echo ”? LIST INBOX ∗”

26 s l e ep 10

27 echo ”? SELECT INBOX”

28 s l e ep 10

29 echo ”? LIST INBOX ∗”

30 s l e ep 10

31 echo ”? SELECT INBOX”

32 s l e ep 10

33 echo ”? LOGOUT”

34 s l e ep 1

35 echo ” e x i t ”

36 ) | t e l n e t
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C.3.3 POP.

pop script.sh contains the script to retrieve content from the POP server.

1 #!/bin / sh

2

3 HOST=$1

4 (

5 echo open ”$HOST 110”

6 s l e ep 20

7 echo ”USER starbuck@sdn . l o c a l ”

8 s l e e p 20

9 echo ”PASS Password !123”

10 s l e ep 20

11 echo ”STAT”

12 s l e ep 20

13 echo ”LIST”

14 s l e ep 20

15 echo ”RETR 1”

16 s l e ep 20

17 echo ”QUIT”

18 ) | t e l n e t

C.3.4 SMTP.

smtp script.sh contains the script to retrieve content from the SMTP server.

1 #!/bin / sh

2

3 HOST=$1

4 (

5 echo open ”$HOST 25”

6 s l e ep 1

7 echo ”EHLO $HOST”

8 s l e ep 1

9 echo ”AUTH LOGIN”

10 s l e ep 1
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11 echo ”YXBvbGxvQHNkbi5sb2NhbA==”

12 s l e ep 1

13 echo ”UGFzc3dvcmQhMTIz”

14 s l e ep 1

15 echo ”MAIL FROM: <apollo@sdn . l o c a l >”

16 s l e ep 5

17 echo ”RCPT TO: <starbuck@sdn . l o c a l >”

18 s l e ep 20

19 echo ”DATA”

20 s l e ep 10

21 echo ”FROM: apollo@sdn . l o c a l ”

22 s l e e p 20

23 echo ”TO: starbuck@sdn . l o c a l ”

24 s l e e p 10

25 echo ”SUBJECT: Message t i t l e ”

26 s l e e p 20

27 echo ”This i s the message .\ r \n”

28 s l e ep 10

29 echo ” .”

30 s l e e p 20

31 echo ”QUIT”

32 ) | t e l n e t

C.3.5 HTTP.

http script.sh contains the script to retrieve content from the HTTP server.

1 #!/bin /bash

2

3

4 cu r l −O $2/Data50 . txt −−l im i t−r a t e 785k

5 sha1sum Data50 . txt > Hash $1 . txt

6 rm Data50 . txt
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C.3.6 RTP.

message.txt contains the contents of a single packet that was continuously transmitted

during RTP trials.

1 This i s the capta in . We have a l i t t l e problem with our entry sequence , so we

may expe r i ence some s l i g h t turbu lence and then − explode .

C.3.7 Data Collection Scripts.

Capture Svcs.ps1 allows for semi-automated collection of network performance data

from the servers on the network.

1 #Generates . pcapng f i l e s on a loop with a pause f o r user input to begin each

loop .

2 #PARAMS

3 #Duration − l ength o f packet capture in seconds

4 #Tr i a l s − how many f i l e s to generate

5 #In t e r f a c e − I n t e r f a c e to l i s t e n on

6 #SVC Name − name o f VM to run packet captures on

7 #Protoco l − What pro to co l i s be ing a s s e s s ed

8 #Control − I s t h i s a c on t r o l or not ?

9 #Must be logged in to vCenter Server . Executed from PowerCLI .

10 param(

11 [ parameter (Mandatory=$ f a l s e ) ] [ i n t ] $Duration = 60 ,

12 [ parameter (Mandatory=$true ) ] [ i n t ] $Tr i a l s = 1 ,

13 [ parameter (Mandatory=$true ) ] [ s t r i n g ] $ In t e r f a c e ,

14 [ parameter (Mandatory=$true ) ] [ s t r i n g ] $SVC Name = ”” ,

15 [ parameter (Mandatory=$true ) ] [ s t r i n g ] $Protoco l = ”” ,

16 [ parameter (Mandatory=$true ) ] [ switch ] $Control

17 )

18

19 #Password !122 f o r Overlord

20 #Password !123 f o r Others

21 $LocalUser = ” admin i s t ra to r ”

22 $LocalPWord = ConvertTo−SecureSt r ing −St r ing ”Password !123” −AsPlainText −

Force
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23 $Loca lCredent ia l = New−Object −TypeName System .Management . Automation .

PSCredentia l −ArgumentList $LocalUser , $LocalPWord

24

25 For ( $ i = 1 ; $ i − l e $Tr i a l s ; $ i++)

26 {

27 Write−Verbose −Message ”Gett ing ready to s t a r t capture on $SVC Name” −Verbose

28

29 i f ( $Control )

30 {

31 $Sc r ip t = ” tshark . exe − i $ I n t e r f a c e −a durat ion : $Duration −w C:\ Users \

Administrator \Captures\ $Protocol−C−$ i . pcapng”

32 }

33 e l s e

34 {

35 $Sc r ip t = ” tshark . exe − i $ I n t e r f a c e −a durat ion : $Duration −w C:\ Users \

Administrator \Captures\ $Protocol−M−$ i . pcapng”

36 }

37

38 Write−Host ” S ta r t i ng s c r i p t f o r $SVC Name . . . ”

39 Invoke−VMScript −VM $SVC Name −GuestCredent ia l $Loca lCredent ia l −ScriptType

bat −Scr iptText $Sc r ip t

40 Write−Host ” Sc r i p t completed . ”

41

42 $remaining = $Tr i a l s − $ i

43

44 Read−Host −Prompt ” $remaining Tr i a l s remain . Press <enter> to cont inue . ”

45 }

Capture Kali.ps1 allows for semi-automated collection of network performance data from

a simulated legitimate user on the network.

1 #Generates . pcapng f i l e s on a loop with a pause f o r user input to begin each

loop .

2 #PARAMS

3 #Duration − l ength o f packet capture in seconds

4 #Tr i a l s − how many f i l e s to generate
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5 #In t e r f a c e − I n t e r f a c e to l i s t e n on

6 #SVC Name − name o f VM to run packet captures on

7 #Protoco l − What pro to co l i s be ing a s s e s s ed

8 #Control − I s t h i s a c on t r o l or not ?

9 #Must be logged in to vCenter Server . Executed from PowerCLI .

10 param(

11 [ parameter (Mandatory=$ f a l s e ) ] [ i n t ] $Duration = 150 ,

12 [ parameter (Mandatory=$true ) ] [ i n t ] $Tr i a l s = 1 ,

13 [ parameter (Mandatory=$true ) ] [ s t r i n g ] $ In t e r f a c e ,

14 [ parameter (Mandatory=$true ) ] [ s t r i n g ] $SVC Name = ”” ,

15 [ parameter (Mandatory=$true ) ] [ s t r i n g ] $Protoco l = ”” ,

16 [ parameter (Mandatory=$true ) ] [ switch ] $Control

17 )

18

19 $LocalUser = ” root ”

20 $LocalPWord = ConvertTo−SecureSt r ing −St r ing ” toor ” −AsPlainText −Force

21 $Loca lCredent ia l = New−Object −TypeName System .Management . Automation .

PSCredentia l −ArgumentList $LocalUser , $LocalPWord

22

23 For ( $ i = 1 ; $ i − l e $Tr i a l s ; $ i++)

24 {

25 $ ta rge t = Read−Host −Prompt ”Enter IP o f t a r g e t machine . . . ”

26 Write−Verbose −Message ”Gett ing ready to s t a r t capture on $SVC Name” −Verbose

27

28 i f ( $Control )

29 {

30 switch ( $Protoco l )

31 {

32 ”IMAP”{ $Sc r ip t = ”sudo tshark − i $ I n t e r f a c e −a durat ion : $Duration −w / root /

Captures / imap captures /IMAP C/$Protocol−C−$i−Kal i . pcapng & s l e ep 5 ; /

root /Captures / imap captures / imap sc r ip t . sh $ ta rge t ”}

33 ”POP”{ $Sc r ip t = ”sudo tshark − i $ I n t e r f a c e −a durat ion : $Duration −w / root /

Captures / pop captures /POP C/$Protocol−C−$i−Kal i . pcapng & s l e ep 5 ; / root

/Captures / pop captures / pop s c r i p t . sh $ ta rge t ”}

34 ”SMTP”{ $Sc r ip t = ”sudo tshark − i $ I n t e r f a c e −a durat ion : $Duration −w / root /
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Captures / smtp captures /SMTP C/$Protocol−C−$i−Kal i . pcapng & s l e ep 5 ; /

root /Captures / smtp captures / smtp sc r ip t . sh $ ta rge t ”}

35 ”HTTP”{ $Sc r ip t = ”sudo tshark − i $ I n t e r f a c e −a durat ion : $Duration −w / root /

Captures / ht tp capture s /HTTP C/$Protocol−C−$i−Kal i . pcapng & s l e ep 5 ; /

root /Captures / ht tp capture s / h t t p s c r i p t . sh $ i ”}

36

37 }

38 }

39 e l s e

40 {

41 switch ( $Protoco l )

42 {

43 ”IMAP”{ $Sc r ip t = ”sudo tshark − i $ I n t e r f a c e −a durat ion : $Duration −w / root /

Captures / imap captures /IMAP M/$Protocol−M−$i−Kal i . pcapng & s l e ep 5 ; /

root /Captures / imap captures / imap sc r ip t . sh $ ta rge t ”}

44 ”POP”{ $Sc r ip t = ”sudo tshark − i $ I n t e r f a c e −a durat ion : $Duration −w / root /

Captures / pop captures /POPM/$Protocol−M−$i−Kal i . pcapng & s l e ep 5 ; / root

/Captures / pop captures / pop s c r i p t . sh $ ta rge t ”}

45 ”SMTP”{ $Sc r ip t = ”sudo tshark − i $ I n t e r f a c e −a durat ion : $Duration −w / root /

Captures / smtp captures /SMTPM/$Protocol−M−$i−Kal i . pcapng & s l e ep 5 ; /

root /Captures / smtp captures / smtp sc r ip t . sh $ ta rge t ”}

46 ”HTTP”{ $Sc r ip t = ”sudo tshark − i $ I n t e r f a c e −a durat ion : $Duration −w / root /

Captures / ht tp capture s /HTTPM/$Protocol−M−$i−Kal i . pcapng & s l e ep 5 ; /

root /Captures / ht tp capture s / h t t p s c r i p t . sh $ i ”}

47

48 }

49 }

50

51 Write−Host ” S ta r t i ng s c r i p t f o r $SVC Name t r i a l $ i ”

52 Invoke−VMScript −VM $SVC Name −GuestCredent ia l $Loca lCredent ia l −ScriptType

bash −Scr iptText $Sc r ip t

53 Write−Host ” Sc r i p t completed . ”

54

55 $remaining = $Tr i a l s − $ i

56

183



57 Read−Host −Prompt ” $remaining Tr i a l s remain . Press <enter> to cont inue . ”

58 }
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Appendix D. Data Processing Scripts

D.1 Stream Isolation

Filter Packet Stream.ps1 isolates the TCP or UDP stream relevant to the protocol under

test.

1 #Wil l c r e a t e a new f i l e f o l l ow i n g a supp l i ed naming scheme ( with hardcoded

name manipulat ion )

2 #tshark f i l t e r i s o l a t e d the f i r s t tcp stream in the . pcapng f i l e .

3 #Current ly only f i l t e r s i n to Control !

4

5 # Character o f f s e t s f o r use in Remove ( ) and I n s e r t ( )

6 # HTTP C Receiver #.pcapng 16 ,17

7 # IMAP C Receiver #.pcapng 16 ,17

8 # SMTP C Receiver #.pcapng 16 ,17

9 # RTP C Receiver #.pcapng 15 ,16

10 # POP C Receiver #.pcapng 15 ,16

11 # SSH C Receiver #.pcapng 15 ,16

12 # HTTP C Sender #.pcapng 14 ,15

13 # IMAP C Sender #.pcapng 14 ,15

14 # SMTP C Sender #.pcapng 14 ,15

15 # RTP C Sender #.pcapng 13 ,14

16 # POP C Sender #.pcapng 13 ,14

17 # SSH C Sender #.pcapng 13 ,14

18

19 param(

20 [ parameter (Mandatory=$true ) ] [ switch ] $Control

21 )

22

23 i f ( $Control ) {

24 $path = ”Control ”

25 $Type = ”C”

26 }

27 e l s e {

28 $Path = ”Mutator”

29 $Type = ”M”
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30 }

31

32 $Protoco l = ”HTTP” , ”IMAP” , ”SMTP” , ”RTP” , ”POP” , ”SSH”

33 $Fi leTypes = ”HTTP @ Receiver #OLD. pcapng ” ,” IMAP @ Receiver #OLD. pcapng ” ,”

SMTP @ Receiver #OLD. pcapng ” ,” RTP @ Receiver #OLD. pcapng ” ,” POP @ Receiver

#OLD. pcapng ” ,” SSH @ Receiver #OLD. pcapng ” ,”HTTP @ Sender #OLD. pcapng ” ,”

IMAP @ Sender #OLD. pcapng ” ,” SMTP @ Sender #OLD. pcapng ” ,”RTP @ Sender #OLD.

pcapng ” ,”POP @ Sender #OLD. pcapng ” ,” SSH @ Sender #OLD. pcapng”

34

35 $ o f f s e t 1 = 17

36 $ o f f s e t 2 = 18

37

38 For ( $ j = 0 ; $ j − l e 11 ; $ j++)

39 {

40 $p = $j % 6

41 i f ( $ j % 3 −eq 0)

42 {

43 $o f f s e t 1−−

44 $o f f s e t 2−−

45 }

46

47 For ( $ i = 1 ; $ i − l e 10 ; $ i++)

48 {

49 $Fi leTypes [ $ j ] = $Fi leTypes [ $ j ] . Remove( $ o f f s e t 1 ) . I n s e r t ( $ o f f s e t 1 , ” $ i ”)+”OLD.

pcapng”

50

51 $sb = new−ob j e c t system . t ext . s t r i n g bu i l d e r

52 $sb . append ( $Fi leTypes [ $ j ] . s p l i t ( ’ ’ ) [ 0 ] )

53 # Since we use @ to cut on , we put i t back with the proper type (C or M)

54 $sb . append (” $Type ”) | out−nu l l

55

56 # Grab the second ha l f o f the o r i g i n a l t ex t [ index 1 ]

57 $s2 = $Fi leTypes [ $ j ] . s p l i t ( ’@’ ) [ 1 ]

58 # the . ToCharArray ( ) method o f a s t r i n g breaks the s t r i n g in to i nd i v i dua l

cha ra c t e r s
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59 # there ’ s a b i t more to char vs s t r i n g ; but , that ’ s unnecessary in fo rmat ion .

60 fo r each ( $c in $s2 . ToCharArray ( ) ) {

61

62 # Add each charac t e r to the s t r i n g bu i l d e r 1 at a time , f o l l owed by a

per iod

63 $sb . append ( $c . ToString ( ) ) | out−nu l l

64 }

65

66 # f i n a l l y , s p i t the whole th ing back out as a s t r i n g ob j e c t ( th ink in

ob j e c t s )

67 $NewFile = $sb . ToString ( )

68

69 i f ( $ i −ge 10) { $ o f f s e t 1++}

70 $NewFile = $NewFile . Remove( $ o f f s e t 1 + 1)+”.pcapng”

71 Write−Host $Fi leTypes [ $ j ]

72 Write−Host $NewFile

73 i f ( $Protoco l [ $p ] −eq ”RTP”)

74 {

75 tshark −r ”C:\ Users \ smayer .CDN\Documents\PCAPS\Control \$ ( $Protoco l [ $p ] ) \$ (

$Fi leTypes [ $ j ] ) ” −2 −R ”udp . stream eq 0” −w ”C:\ Users \ smayer .CDN\

Documents\PCAPS\Control \$ ( $Protoco l [ $p ] ) \$NewFile”

76 }

77 e l s e

78 {

79 tshark −r ”C:\ Users \ smayer .CDN\Documents\PCAPS\Control \$ ( $Protoco l [ $p ] ) \$ (

$Fi leTypes [ $ j ] ) ” −2 −R ” tcp . stream eq 0” −w ”C:\ Users \ smayer .CDN\

Documents\PCAPS\Control \$ ( $Protoco l [ $p ] ) \$NewFile”

80 }

81 i f ( $ i −ge 10) { $o f f s e t 1 −−}

82 }

83 }
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D.2 Data Extraction

GatherQoSData.ps1 takes a filtered TCP or UDP stream as input and produces a .csv

with information about the transmission for later analysis.

1 #1. Apply f i l t e r to get l a t ency and RTT

2 #tshark −r . \ [ f i l e ] . pcapng −T f i e l d s −e frame . number −e ip . s r c −e ip . dst −e

tcp . t ime de l t a −e tcp . a n a l y s i s . a c k r t t −E header=y > [ f i l e ] r e s u l t s . csv

3 #2. c ap in f o s on sender and r e c e i v e r to get byte r a t e s and t o t a l packets

4 #cap in f o s [ f i l e ] . pcapng > [ f i l e ] i n f o . txt

5 #OUTPUT: QoS Data in a tab−separated csv

6 #HTTP and RTP Commented f o r a n a l y s i s l a t e r .

7

8 param(

9 [ parameter (Mandatory=$true ) ] [ switch ] $Control ,

10 [ parameter (Mandatory=$true ) ] [ s t r i n g ] $Protoco l

11 )

12

13 i f ( $Control ) {

14 $path = ”Control ”

15 $Type = ”C”

16 }

17 e l s e {

18 $Path = ”Mutator”

19 $Type = ”M”

20 }

21

22 $TCP = $True

23

24 switch ( $Protoco l )

25 {

26 ”FTP”{$TCP = $True}

27 ”HTTP”{$TCP = $True}

28 ”IMAP”{$TCP = $True}

29 ”POP”{$TCP = $True}

30 ”RTP”{$TCP = $False }
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31 ”SMTP”{$TCP = $True}

32 ”SSH”{$TCP = $True}

33 }

34

35 func t i on gatherTCPData ( $path , $protoco l , $type , $ i )

36 {

37 tshark −r C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Rece iver \

F i l t e r e d \ $protoco l ‘ $type ‘ Re c e i v e r $ i ‘ . pcapng −T f i e l d s −e frame . number

−e ip . s r c −e ip . dst −e tcp . t ime de l t a −e tcp . a n a l y s i s . a c k r t t −e tcp .

a n a l y s i s . r e t r an sm i s s i on −e tcp . a n a l y s i s . f a s t r e t r a n sm i s s i o n −e tcp .

a n a l y s i s . a ck l o s t s egment −e tcp . a n a l y s i s . o u t o f o r d e r −e tcp . a n a l y s i s .

s pu r i ou s r e t r an sm i s s i on −e tcp . a n a l y s i s . dup l i c a t e a ck −e tcp . a n a l y s i s .

window update −e tcp . a n a l y s i s . w indow fu l l −E header=y > C:\ Users \ smayer .

CDN\Documents\GitHub\Mayer Thesis\Experiments\Resu l t s \ $protoco l ‘\ $path ‘\

$protoco l ‘ $type ‘ Re c e i v e r $ i ‘ r e s u l t s . csv

38 tshark −r C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Sender\

F i l t e r e d \ $protoco l ‘ $type ‘ Sender $ i ‘ . pcapng −T f i e l d s −e frame . number −e

ip . s r c −e ip . dst −e tcp . t ime de l t a −e tcp . a n a l y s i s . a c k r t t −e tcp .

a n a l y s i s . r e t r an sm i s s i on −e tcp . a n a l y s i s . f a s t r e t r a n sm i s s i o n −e tcp .

a n a l y s i s . a ck l o s t s egment −e tcp . a n a l y s i s . o u t o f o r d e r −e tcp . a n a l y s i s .

s pu r i ou s r e t r an sm i s s i on −e tcp . a n a l y s i s . dup l i c a t e a ck −e tcp . a n a l y s i s .

window update −e tcp . a n a l y s i s . w indow fu l l −E header=y > C:\ Users \ smayer .

CDN\Documents\GitHub\Mayer Thesis\Experiments\Resu l t s \ $protoco l ‘\ $path ‘\

$protoco l ‘ $type ‘ Sender $ i ‘ r e s u l t s . csv

39 cap in f o s C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Rece iver \

F i l t e r e d \ $protoco l ‘ $type ‘ Re c e i v e r $ i ‘ . pcapng | Se l e c t−St r ing ” F i l e name

: ” , ”Number o f packets : ” , ” Capture durat ion : ” , ” Data b i t r a t e : ” | Add−

Content C:\ Users \ smayer .CDN\Documents\GitHub\Mayer Thesis\Experiments\

Resu l t s \ $protoco l ‘\ $path ‘\ $protoco l ‘ $type ‘ $ i ‘ I n f o . txt

40 cap in f o s C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Sender\

F i l t e r e d \ $protoco l ‘ $type ‘ Sender $ i ‘ . pcapng | Se l e c t−St r ing ” F i l e name

: ” , ”Number o f packets : ” , ” Capture durat ion : ” , ” Data b i t r a t e : ” | Add−

Content C:\ Users \ smayer .CDN\Documents\GitHub\Mayer Thesis\Experiments\

Resu l t s \ $protoco l ‘\ $path ‘\ $protoco l ‘ $type ‘ $ i ‘ I n f o . txt

41
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42 Write−Host $pro toco l $type $ i complete .

43 }

44

45 func t i on gatherUDPData ( $path , $protoco l , $type , $ i )

46 {

47 tshark −r C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Rece iver \

F i l t e r e d \ $protoco l ‘ $type ‘ Re c e i v e r $ i ‘ . pcapng −T f i e l d s −e frame . number

−e ip . s r c −e ip . dst −e tcp . t ime de l t a −e tcp . a n a l y s i s . a c k r t t −e tcp .

a n a l y s i s . r e t r an sm i s s i on −e tcp . a n a l y s i s . f a s t r e t r a n sm i s s i o n −e tcp .

a n a l y s i s . a ck l o s t s egment −e tcp . a n a l y s i s . o u t o f o r d e r −e tcp . a n a l y s i s .

s pu r i ou s r e t r an sm i s s i on −e tcp . a n a l y s i s . dup l i c a t e a ck −e tcp . a n a l y s i s .

window update −e tcp . a n a l y s i s . w indow fu l l −E header=y > C:\ Users \ smayer .

CDN\Documents\GitHub\Mayer Thesis\Experiments\Resu l t s \ $protoco l ‘\ $path ‘\

$protoco l ‘ $type ‘ Re c e i v e r $ i ‘ r e s u l t s . csv

48 tshark −r C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Sender\

F i l t e r e d \ $protoco l ‘ $type ‘ Sender $ i ‘ . pcapng −T f i e l d s −e frame . number −e

ip . s r c −e ip . dst −e tcp . t ime de l t a −e tcp . a n a l y s i s . a c k r t t −e tcp .

a n a l y s i s . r e t r an sm i s s i on −e tcp . a n a l y s i s . f a s t r e t r a n sm i s s i o n −e tcp .

a n a l y s i s . a ck l o s t s egment −e tcp . a n a l y s i s . o u t o f o r d e r −e tcp . a n a l y s i s .

s pu r i ou s r e t r an sm i s s i on −e tcp . a n a l y s i s . dup l i c a t e a ck −e tcp . a n a l y s i s .

window update −e tcp . a n a l y s i s . w indow fu l l −E header=y > C:\ Users \ smayer .

CDN\Documents\GitHub\Mayer Thesis\Experiments\Resu l t s \ $protoco l ‘\ $path ‘\

$protoco l ‘ $type ‘ Sender $ i ‘ r e s u l t s . csv

49 cap in f o s C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Rece iver \

F i l t e r e d \ $protoco l ‘ $type ‘ Re c e i v e r $ i ‘ . pcapng | Se l e c t−St r ing ” F i l e name

: ” , ”Number o f packets : ” , ” Capture durat ion : ” , ” Data b i t r a t e : ” | Add−

Content C:\ Users \ smayer .CDN\Documents\GitHub\Mayer Thesis\Experiments\

Resu l t s \ $protoco l ‘\ $path ‘\ $protoco l ‘ $type ‘ $ i ‘ I n f o . txt

50 cap in f o s C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Sender\

F i l t e r e d \ $protoco l ‘ $type ‘ Sender $ i ‘ . pcapng | Se l e c t−St r ing ” F i l e name

: ” , ”Number o f packets : ” , ” Capture durat ion : ” , ” Data b i t r a t e : ” | Add−

Content C:\ Users \ smayer .CDN\Documents\GitHub\Mayer Thesis\Experiments\

Resu l t s \ $protoco l ‘\ $path ‘\ $protoco l ‘ $type ‘ $ i ‘ I n f o . txt

51

52 Write−Host $pro toco l $type $ i complete .
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53 Write−Host C:\ Users \ smayer .CDN\Documents\PCAPS\$path ‘\ $protoco l ‘\ Rece iver \

F i l t e r e d \ $protoco l ‘ $type ‘ Re c e i v e r $ i ‘ . pcapng

54 }

55

56 For ( $ i t e r = 1 ; $ i t e r − l e 10 ; $ i t e r++)

57 {

58 i f ($TCP) {gatherTCPData $Path $Protoco l $Type $ i t e r }

59 e l s e {gatherUDPData $Path $Protoco l $Type $ i t e r }

60 }

D.3 Data Aggregation

ReadResults.R takes the output of GatherQoSData.ps1 and calculates averages for each

measured piece of information. Results are then stored in another .csv for statistical anal-

ysis.

1 r e qu i r e ( t i dyv e r s e )

2 r e qu i r e ( r eadx l )

3 r e qu i r e ( s t r i n g r )

4

5 c t r l d i r s <− c (”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /

Resu l t s /FTP/Control ” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /

Experiments /Resu l t s /HTTP/Control ” ,”C: / Users /smayer .CDN/Documents/GitHub/

Mayer Thesis /Experiments /Resu l t s /IMAP/Control ” ,”C: / Users /smayer .CDN/

Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /POP/Control ” ,”C: / Users /

smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /RTP/Control

” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /

SMTP/Control ” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /

Experiments /Resu l t s /SSH/Control ”)

6 mutatedirs <− c (”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments

/Resu l t s /FTP/Mutator ” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /

Experiments /Resu l t s /HTTP/Mutator ” ,”C: / Users /smayer .CDN/Documents/GitHub/

Mayer Thesis /Experiments /Resu l t s /IMAP/Mutator ” ,”C: / Users /smayer .CDN/

Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /POP/Mutator ” ,”C: / Users /

smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /RTP/Mutator
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” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /

SMTP/Mutator ” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /

Experiments /Resu l t s /SSH/Mutator ”)

7 p ro to co l <− c (”FTP” ,”HTTP” ,”IMAP” ,”POP” ,”RTP” ,”SMTP” ,”SSH”)

8 #RIPs o f sender used f o r each t r i a l . 1 : 1 mapping with p ro to co l vec to r

9 s end e r r i p <− c

( ” 1 0 . 1 3 . 1 . 8 ” , ” 1 0 . 1 3 . 1 . 8 ” , ” 1 0 . 1 3 . 1 . 8 ” , ” 1 0 . 1 3 . 1 . 8 ” , ” 1 0 . 1 3 . 1 . 8 ” , ” 1 0 . 1 3 . 1 . 8 ” , ” 1 0 . 1 3 . 1 . 8 ” )

10

11 #Generic f i l ename format

12 udp st r <− ”AAA X Jitter . csv ”

13 s e nd e r s t r <− ”AAA X Sender # r e s u l t s . csv ”

14 r e c e i v e r s t r <− ”AAA X Receiver # r e s u l t s . csv ”

15 i n f o <− ”AAA X# In f o . txt ”

16

17 #Tibble f o r in t e rmed ia t e r e s u l t s S = Sender , R = Rece iver

18 TCP Avgs <− t i b b l e ( l a t ency=0, RTT=0, durat ion=0, BPSSender=0, BPSReceiver=0,

PktsSender=0, PktsRece iver=0, PktsDrop = ( PktsSender−PktsRece iver ) ,

RetransR = 0 , RetransS = 0 , FastRetransR = 0 , FastRetransS = 0 , ACKlostR =

0 , ACKlostS = 0 , OutOfOrderR = 0 , OutOfOrderS = 0 , SRetransR = 0 ,

SRetransS = 0 , DupACKR = 0 , DupACKS = 0 , WinUpdateR = 0 , WinUpdateS = 0 ,

WinFullR = 0 , WinFullS = 0)

19

20 UDP Avgs <− t i b b l e ( Maxj i t terS=0, MaxjitterR=0, j i t t e r S =0, j i t t e rR =0, durat ion

=0, BPSSender=0, BPSReceiver=0, PktsSender=0, PktsRece iver=0, PktsDrop = (

PktsSender−PktsRece iver ) )

21

22 #Pul l data from f i l e s to c r e a t e t i b b l e s f o r TCP data

23 parseTCP <− f unc t i on (TCP Avgs , s ende r s t r , r e c e i v e r s t r , in fo , s e nd e r r i p )

24 {

25 #Import f i l e s

26 Sender <− a s t i b b l e ( read . csv ( f i l e=s ende r s t r , header=TRUE, na . s t r i n g s = ( c

(”” , ”NA”) ) , sep=’\ t ’ , f i l eEncod ing = ”UTF−16LE”) )

27 Rece iver <− a s t i b b l e ( read . csv ( f i l e=r e c e i v e r s t r , header=TRUE, na . s t r i n g s =

( c (”” , ”NA”) ) , sep=’\ t ’ , f i l eEncod ing = ”UTF−16LE”) )
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28 p r i n t ( nrow ( Rece iver ) )

29 #I s o l a t e l a t ency data

30 Sender Latency <− t i b b l e ( ip . dst = Sender$ip . dst , d e l t a = Sender$tcp .

t ime de l t a ) %>% f i l t e r ( ip . dst == s end e r r i p )

31 Sender Latency$de l ta [ Sender Latency$de l ta >3.5 ] = NA #Ignore pauses due to

t e s t s c r i p t

32 Latency mean <− round (mean( Sender Latency$de l ta , na . rm = TRUE) , 5)

33

34 #I s o l a t e RTT data

35 Sender RTT <− t i b b l e ( frame = Sender$frame . number , RTT = Sender$tcp . a n a l y s i s

. a c k r t t ) %>% drop na (RTT)

36 RTT mean <− round (mean(Sender RTT$RTT) , 5)

37

38 #I s o l a t e pkts , durat ion , and bps from text f i l e s

39 i n f o <− readLines ( i n f o )

40 pkt r e c <− as . numeric (word ( in fo , s t a r t = 6) [ 2 ] )

41 pkt send <− as . numeric (word ( in fo , s t a r t = 6) [ 6 ] )

42 dur <− round ( as . numeric (word ( in fo , s t a r t = 6) [ 3 ] ) , 3)

43 bps r <− as . numeric (word ( in fo , s t a r t = 10) [ 4 ] )

44 bps s <− as . numeric (word ( in fo , s t a r t = 10) [ 8 ] )

45

46 p r i n t ( s e nd e r s t r )

47 #Gather TCP I s su e Data ( Sender )

48 RT S = sum( Sender$tcp . a n a l y s i s . r e t ransmi s s i on , na . rm = TRUE)

49 FR S = sum( Sender$tcp . a n a l y s i s . f a s t r e t r an sm i s s i o n , na . rm = TRUE)

50 ACKl S = sum( Sender$tcp . a n a l y s i s . ack lo s t segment , na . rm = TRUE)

51 OO S = sum( Sender$tcp . a n a l y s i s . ou t o f o rde r , na . rm = TRUE)

52 SR S = sum( Sender$tcp . a n a l y s i s . s pu r i ou s r e t r an sm i s s i on , na . rm = TRUE)

53 DA S = sum( Sender$tcp . a n a l y s i s . dup l i ca t e ack , na . rm = TRUE)

54 WU S = sum( Sender$tcp . a n a l y s i s . window update , na . rm = TRUE)

55 WF S = sum( Sender$tcp . a n a l y s i s . window ful l , na . rm = TRUE)

56

57 p r i n t ( r e c e i v e r s t r )

58 #Gather TCP I s su e Data ( Rece iver )

59 RT R = sum( Rece iver$tcp . a n a l y s i s . r e t ransmi s s i on , na . rm = TRUE)
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60 FR R = sum( Rece iver$tcp . a n a l y s i s . f a s t r e t r an sm i s s i o n , na . rm = TRUE)

61 ACKl R = sum( Rece iver$tcp . a n a l y s i s . ack lo s t segment , na . rm = TRUE)

62 OO R = sum( Rece iver$tcp . a n a l y s i s . ou t o f o rde r , na . rm = TRUE)

63 SR R = sum( Rece iver$tcp . a n a l y s i s . s pu r i ou s r e t r an sm i s s i on , na . rm = TRUE)

64 DA R = sum( Rece iver$tcp . a n a l y s i s . dup l i ca t e ack , na . rm = TRUE)

65 WUR = sum( Rece iver$tcp . a n a l y s i s . window update , na . rm = TRUE)

66 WFR = sum( Rece iver$tcp . a n a l y s i s . window ful l , na . rm = TRUE)

67

68 add row (TCP Avgs , l a t ency = Latency mean , RTT = RTT mean , durat ion = dur ,

BPSSender = bps s , BPSReceiver = bps r , PktsSender = pkt send ,

PktsRece iver = pkt rec , PktsDrop=(pkt send−pkt r e c ) , RetransR = RT R,

RetransS = RT S , FastRetransR = FR R, FastRetransS = FR S , ACKlostR =

ACKl R , ACKlostS = ACKl S , OutOfOrderR = OO R, OutOfOrderS = OO S,

SRetransR = SR R , SRetransS = SR S , DupACKR = DA R, DupACKS = DA S ,

WinUpdateR = WUR, WinUpdateS = WU S, WinFullR = WF R, WinFullS = WF S)

69 }

70

71 #Pul l data from f i l e s to c r e a t e t i b b l e s f o r TCP data

72 parseUDP <− f unc t i on (UDP Avgs , udp str , in fo , s e nd e r r i p )

73 {

74 #Import f i l e s ( Expects UTF−8)

75 J i t t e r Da ta <− a s t i b b l e ( read . csv ( f i l e=udp str , header=TRUE, na . s t r i n g s = ( c

(”” , ”NA”) ) , sep = ’ , ’ , f i l eEncod ing = ”UTF−8”) )

76 #I s o l a t e J i t t e r data

77 mjs <− round (mean( J i t te r Data$Send .Max . J i t t e r . . ms . ) , 5)

78 mjr <− round (mean( J i t te r Data$Rec .Max . J i t t e r . . ms . ) , 5)

79 j s <− round (mean( J i t te r Data$Send .Mean . J i t t e r . . ms . ) , 5)

80 j r <− round (mean( J i t te r Data$Rec .Mean . J i t t e r . . ms . ) , 5)

81

82 #I s o l a t e pkts , durat ion , and bps from text f i l e s

83 i n f o <− readLines ( i n f o )

84 pkt r e c <− as . numeric (word ( in fo , s t a r t = 6) [ 2 ] )

85 pkt send <− as . numeric (word ( in fo , s t a r t = 6) [ 6 ] )

86 dur <− as . numeric (word ( in fo , s t a r t = 6) [ 3 ] )

87 bps r <− as . numeric (word ( in fo , s t a r t = 10) [ 4 ] )
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88 bps s <− as . numeric (word ( in fo , s t a r t = 10) [ 8 ] )

89 p r i n t ( pk t r e c )

90

91 add row (UDP Avgs , Maxj i t terS=mjs , MaxjitterR=mjr , j i t t e r S=js , j i t t e rR=jr ,

durat ion = dur , BPSSender = bps s , BPSReceiver = bps r , PktsSender =

pkt send , PktsRece iver = pkt rec , PktsDrop=(pkt send−pkt r e c ) )

92 }

93

94 #Creates the appropr ia t e f i l enames & de s t i n a t i o n s f o r output

95 par s eProtoco l <− f unc t i on ( d i r e c to ry , protoco l , s e nd e r r i p )

96 {

97 p r i n t ( p ro to co l )

98 p r i n t ( d i r e c t o r y )

99 setwd ( d i r e c t o r y )

100

101 f o r ( i in c ( 1 : 3 0 ) )

102 {

103

104 #Update f i l enames f o r the cur rent t r i a l

105 udp st r <− sub ( ” ˆ [ [ : upper : ] ] { 3 , } ” , protoco l , udp st r )

106 s e nd e r s t r <− sub ( ” ˆ [ [ : upper : ] ] { 3 , } ” , protoco l , s e nd e r s t r )

107 r e c e i v e r s t r <− sub ( ” ˆ [ [ : upper : ] ] { 3 , } ” , protoco l , r e c e i v e r s t r )

108 i n f o <− sub ( ” ˆ [ [ : upper : ] ] { 3 , } ” , protoco l , i n f o )

109

110 i f ( g r ep l (” Control ” , d i r e c t o r y ) )

111 {

112 udp st r <− sub (” X ” , ” C ” , udp st r )

113 s e nd e r s t r <− sub (” X ” , ” C ” , s e nd e r s t r )

114 r e c e i v e r s t r <− sub (” X ” , ” C ” , r e c e i v e r s t r )

115 i n f o <− sub (” X ” , ” C ” , i n f o )

116 }

117 e l s e i f ( g r ep l (”Mutator ” , d i r e c t o r y ) )

118 {

119 udp st r <− sub (” X ” , ” M ” , udp st r )

120 s e nd e r s t r <− sub (” X ” , ” M ” , s e nd e r s t r )
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121 r e c e i v e r s t r <− sub (” X ” , ” M ” , r e c e i v e r s t r )

122 i n f o <− sub (” X ” , ” M ” , i n f o ) }

123 e l s e

124 {

125 p r i n t (” Error a s s i gn i ng output f i l e name . ” )

126 }

127

128 p r in t ( i )

129 #Update f o r each t r i a l

130 s e nd e r s t r <− sub (” (\\d |# |\\d\\d) ” , capture . output ( cat (” ” , i , ” ” , sep=””)

) , s e nd e r s t r )

131 r e c e i v e r s t r <− sub (” (\\d |# |\\d\\d) ” , capture . output ( cat (” ” , i , ” ” , sep

=””) ) , r e c e i v e r s t r )

132 i n f o <− sub (” (\\d |# |dd) ” , capture . output ( cat (” ” , i , ” ” , sep=””) ) , i n f o )

133

134 #Get ac tua l data

135 i f ( p ro to co l != ”RTP”)

136 {

137 TCP Avgs <− parseTCP(TCP Avgs , s ende r s t r , r e c e i v e r s t r , in fo ,

s e nd e r r i p )

138 }

139 e l s e

140 {

141 UDP Avgs <− parseUDP(UDP Avgs , udp str , in fo , s e nd e r r i p )

142 }

143 }

144

145 i f ( p ro to co l != ”RTP”)

146 {

147 TCP Avgs <− TCP Avgs [−1 , ]

148 p r in t (TCP Avgs)

149 #Output r e s u l t s to proper d i r e c t o r y

150 i f ( g r ep l (” Control ” , d i r e c t o r y ) )

151 {
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152 wr i t e . csv (TCP Avgs , f i l e = capture . output ( cat ( protoco l , ” C Avgs . csv ” ,

sep=””) ) )

153 }

154 e l s e i f ( g r ep l (”Mutator ” , d i r e c t o r y ) )

155 {

156 wr i t e . csv (TCP Avgs , f i l e = capture . output ( cat ( protoco l , ” M Avgs . csv ” ,

sep=””) ) )

157 }

158 e l s e

159 {

160 p r i n t (” Error par s ing d i r e c t o r y name . ” )

161 }

162 }

163 e l s e

164 {

165 UDP Avgs <− UDP Avgs [−1 , ]

166 p r in t (UDP Avgs)

167 #Output r e s u l t s to proper d i r e c t o r y

168 i f ( g r ep l (” Control ” , d i r e c t o r y ) )

169 {

170 wr i t e . csv (UDP Avgs , f i l e = capture . output ( cat ( protoco l , ” C Avgs . csv ” ,

sep=””) ) )

171 }

172 e l s e i f ( g r ep l (”Mutator ” , d i r e c t o r y ) )

173 {

174 wr i t e . csv (UDP Avgs , f i l e = capture . output ( cat ( protoco l , ” M Avgs . csv ” ,

sep=””) ) )

175 }

176 e l s e

177 {

178 p r i n t (” Error par s ing d i r e c t o r y name . ” )

179 }

180 }

181 }

182
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183 f o r ( j in c ( 2 : 2 ) )

184 {

185 par s eProtoco l ( d i r e c t o r y = c t r l d i r s [ j ] , p r o to co l = pro to co l [ j ] , s e nd e r r i p =

s end e r r i p [ j ] )

186 par s eProtoco l ( d i r e c t o r y = mutatedirs [ j ] , p r o to co l = pro to co l [ j ] , s e nd e r r i p =

s end e r r i p [ j ] )

187 }

D.4 Validation Analysis

MakeGraphs.R takes Aust’s original data and the validation data from experiments and

produces graphs of the data for comparison.

1 r e qu i r e ( t i dyv e r s e )

2 r e qu i r e ( r eadx l )

3 #r equ i r e ( gr idExtra )

4 r e qu i r e ( ggp lot2 )

5 r e qu i r e ( cowplot )

6 r e qu i r e ( ex t r a f on t )

7

8 setwd (”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments ”)

9

10 Avgs <− a s t i b b l e ( r e ad ex c e l (” Resu l t s . x l sx ” , shee t = ”AustAvgs ”) )

11

12 MutationTime = c (”30S” ,”1M” ,”5M” ,”15M”)

13

14 #outputd i r <− ”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Latex/ Figures

”

15

16 #S l i d e s d i r e c t o r y

17 outputd i r <− ”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis / S l i d e s /”

18

19 IS <− ggp lot ( data=Avgs , aes ( x=Time , y=IntenseScan , group=Mutate ) ) +

20 th eme c l a s s i c ( ) +

21 labs (y=”Seconds ” , c o l=”Treatment\nCondition ”) +

22 geom l ine ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 2) +
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23 geom point ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 3) +

24 s c a l e x d i s c r e t e ( l im i t s=MutationTime ) +

25 theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =16) , ax i s . t ex t . y = e l ement text ( s i z e =16) ,

26 ax i s . t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =18) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =18) )

27

28 ggsave (” IScan . png ” , IS , path = outputdir , he ight = 5 .75 , width = 5 . 4 , un i t s =

” in ”)

29

30 IH <− ggp lot ( data=Avgs , aes ( x=Time , y=IntenseHosts , group=Mutate ) ) +

31 th eme c l a s s i c ( ) +

32 labs (y=”Hosts ” , c o l=”Treatment\nCondition ”) +

33 geom l ine ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 2) +

34 geom point ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 3) +

35 s c a l e x d i s c r e t e ( l im i t s=MutationTime ) +

36 theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =16) , ax i s . t ex t . y = e l ement text ( s i z e =16) ,

37 ax i s . t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =18) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =18) )

38

39 ggsave (” IHosts . png ” , IH , path = outputdir , he ight = 5 .75 , width = 5 . 4 , un i t s =

” in ”)

40

41 IPT <− ggp lot ( data=Avgs , aes ( x=Time , y=‘PenTime−I ‘ , group=Mutate ) ) +

42 th eme c l a s s i c ( ) +

43 labs (y=”Seconds ” , c o l=”Treatment\nCondition ”) +

44 geom l ine ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 2) +

45 geom point ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 3) +

46 s c a l e x d i s c r e t e ( l im i t s=MutationTime ) +

47 theme ( text = e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =16) , ax i s . t ex t . y = e l ement text ( s i z e =16) ,

48 ax i s . t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =18) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =18) )

49
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50 ggsave (”IPT . png ” , IPT , path = outputdir , he ight = 5 .75 , width = 5 . 4 , un i t s = ”

in ”)

51

52 QS <− ggp lot ( data=Avgs , aes ( x=Time , y=QuickScan , group=Mutate ) ) +

53 th eme c l a s s i c ( ) +

54 labs (y=”Seconds ” , c o l=”Treatment\nCondition ”) +

55 geom l ine ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 2) +

56 geom point ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 3) +

57 s c a l e x d i s c r e t e ( l im i t s=MutationTime ) +

58 theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =16) , ax i s . t ex t . y = e l ement text ( s i z e =16) ,

59 ax i s . t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =18) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =18) )

60

61 ggsave (”QScan . png ” , QS, path = outputdir , he ight = 5 .75 , width = 5 . 4 , un i t s =

” in ”)

62

63

64 QH <− ggp lot ( data=Avgs , aes ( x=Time , y=QuickHosts , group=Mutate ) ) +

65 th eme c l a s s i c ( ) +

66 labs (y=”Hosts ” , c o l=”Treatment\nCondition ”) +

67 geom l ine ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 2) +

68 geom point ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 3) +

69 s c a l e x d i s c r e t e ( l im i t s=MutationTime ) +

70 theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =16) , ax i s . t ex t . y = e l ement text ( s i z e =16) ,

71 ax i s . t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =18) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =18) )

72

73 ggsave (”QHosts . png ” , QH, path = outputdir , he ight = 5 .75 , width = 5 . 4 , un i t s =

” in ”)

74

75

76 QPT <− ggp lot ( data=Avgs , aes ( x=Time , y=‘PenTime−Q‘ , group=Mutate ) ) +

77 th eme c l a s s i c ( ) +
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78 l ab s (y=”Seconds ” , c o l=”Treatment\nCondition ”) +

79 geom l ine ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 2) +

80 geom point ( aes ( c o l o r=f a c t o r (Mutate ) ) , s i z e = 3) +

81 s c a l e x d i s c r e t e ( l im i t s=MutationTime ) +

82 theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =16) , ax i s . t ex t . y = e l ement text ( s i z e =16) ,

83 ax i s . t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =18) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =18) )

84

85 ggsave (”QPT. png” , QPT, path = outputdir , he ight = 5 .75 , width = 5 . 4 , un i t s = ”

in ”)

D.5 Validation T-tests

ValidationTTests.R takes control and mutation data and conducts t-tests at the 99%

confidence level to look for a difference in the two reported means.

1 r e qu i r e ( t i dyv e r s e )

2 r e qu i r e ( dplyr )

3 r e qu i r e ( r eadx l )

4 r e qu i r e ( s t r i n g r )

5

6 #Read Rep l i c a t i on Data

7 setwd (”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /”)

8

9 MayerControl <− a s t i b b l e ( r e ad ex c e l (” Resu l t s . x l sx ” , shee t = ”Control − 30

Hosts ”) )

10 Tr ia l30S <− a s t i b b l e ( r e ad ex c e l (” Resu l t s . x l sx ” , shee t = ”30 sec − 30 Hosts ”) )

11 Trial1M <− a s t i b b l e ( r e ad ex c e l (” Resu l t s . x l sx ” , shee t = ”60 sec − 30 Hosts ”) )

12 Trial5M <− a s t i b b l e ( r e ad ex c e l (” Resu l t s . x l sx ” , shee t = ”5 min − 30 Hosts ”) )

13 Trial15M <− a s t i b b l e ( r e ad ex c e l (” Resu l t s . x l sx ” , shee t = ”15 min − 30 Hosts ”) )

14

15 #setwd (”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /

Va l idat i on ”)

16
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17 #MayerControl <− a s t i b b l e ( read . csv ( f i l e =”MayerControl . csv ” , header=TRUE, sep

= ’ , ’ , na . s t r i n g s = ”−”, f i l eEncod ing = ”UTF−8”) )

18 #Tria l30S <− a s t i b b l e ( read . csv ( f i l e =”Mayer30S . csv ” , header=TRUE, sep = ’ , ’ , na .

s t r i n g s = ”−”, f i l eEncod ing = ”UTF−8”) )

19 #Trial1M <− a s t i b b l e ( read . csv ( f i l e =”Mayer30S . csv ” , header=TRUE, sep = ’ , ’ , na .

s t r i n g s = ”−”, f i l eEncod ing = ”UTF−8”) )

20 #Trial5M <− a s t i b b l e ( read . csv ( f i l e =”Mayer30S . csv ” , header=TRUE, sep = ’ , ’ , na .

s t r i n g s = ”−”, f i l eEncod ing = ”UTF−8”) )

21 #Trial15M <− a s t i b b l e ( read . csv ( f i l e =”Mayer30S . csv ” , header=TRUE, sep = ’ , ’ , na .

s t r i n g s = ”−”, f i l eEncod ing = ”UTF−8”) )

22

23 treatments <− c (” Control ” ,”30S” , ”1M” , ”5M” , ”15M”)

24

25 #Change to output d i r e c t o r y

26 setwd (”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /

Va l idat i on ”)

27

28 t . t e s t . robust <− f unc t i on ( Control , Mutation , hyp , con f id ence ) {

29 obj<−t ry ( t . t e s t ( Control , Mutation , var . equal = hyp , conf . l e v e l = con f idence )

, s i l e n t=TRUE)

30 i f ( i s ( obj , ” try−e r r o r ”) ) re turn ( warnings ( ) ) e l s e re turn ( obj )

31 }

32

33 tTest s <− f unc t i on ( ControlData , MutationData , Tr i a l )

34 {

35 p r i n t ( paste (” Conducting t−t e s t s f o r ” , Tr ia l , sep = ” ”) )

36 #Do t−t e s t s 99% con f idence l e v e l s f o r a l l met r i c s

37 s ink ( paste (”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /

Resu l t s /Va l idat i on /” , Tr ia l , ” 99 T−Tests . txt ” , sep = ””) , append =

FALSE)

38

39 p r i n t (” Scan − I ”)

40 p r i n t ( t . t e s t . robust ( ControlData$ ‘ In t ense Scan ‘ , MutationData$ ‘ In t ense Scan ‘ ,

hyp = TRUE, con f idence = 0 . 99 ) )

41 p r i n t (” Scan − Q”)
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42 p r i n t ( t . t e s t . robust ( ControlData$ ‘ Quick Scan ‘ , MutationData$ ‘ Quick Scan ‘ , hyp

= TRUE, con f idence = 0 . 99 ) )

43 p r i n t (” Hosts − I ”)

44 p r i n t ( t . t e s t . robust ( ControlData$ ‘ In t ense Hosts ‘ , MutationData$ ‘ In t ense Hosts

‘ , hyp = TRUE, con f idence = 0 . 99 ) )

45 p r i n t (” Hosts − Q”)

46 p r i n t ( t . t e s t . robust ( ControlData$ ‘ Quick Hosts ‘ , MutationData$ ‘ Quick Hosts ‘ ,

hyp = TRUE, con f idence = 0 . 99 ) )

47 p r i n t (”Pen Time − I ”)

48 p r i n t ( t . t e s t . robust ( ControlData$ ‘ Pen Time − I ‘ , MutationData$ ‘ Pen Time − I ‘ ,

hyp = TRUE, con f idence = 0 . 99 ) )

49 p r i n t (”Pen Time − Q”)

50 p r i n t ( t . t e s t . robust ( ControlData$ ‘ Pen Time − Q‘ , MutationData$ ‘ Pen Time − Q‘ ,

hyp = TRUE, con f idence = 0 . 99 ) )

51 s ink ( )

52 }

53

54 tTest s (MayerControl , Tria l30S , ”30S”)

55 tTest s (MayerControl , Trial1M , ”1M”)

56 tTest s (MayerControl , Trial5M , ”5M”)

57 tTest s (MayerControl , Trial15M , ”15M”)

D.6 QoS Analysis

StatsTests.R takes the input from ReadResults.R and then charts the differences between

control and mutation data. It also conducts t-tests and is capable of producing histograms.

1 r e qu i r e ( t i dyv e r s e )

2 r e qu i r e ( r eadx l )

3 r e qu i r e ( s t r i n g r )

4 r e qu i r e ( ggp lot2 )

5 r e qu i r e ( psych )

6 r e qu i r e ( reshape2 )

7 r e qu i r e ( cowplot )

8 r e qu i r e ( matr ixStats )

9 r e qu i r e ( ex t r a f on t )
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10

11 #Process avgs . csv f i l e s f o r a l l the p r o t o c o l s under t e s t and conduct t−t e s t s

as we l l as make box & whisker p l o t s .

12 #Has c ap ab i l i t y to make histograms ( cu r r en t l y commented out c a l l to func t i on

histograms ( ) )

13

14 c t r l d i r s <− c (”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /

Resu l t s /FTP/Control ” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /

Experiments /Resu l t s /HTTP/Control ” ,”C: / Users /smayer .CDN/Documents/GitHub/

Mayer Thesis /Experiments /Resu l t s /IMAP/Control ” ,”C: / Users /smayer .CDN/

Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /POP/Control ” ,”C: / Users /

smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /RTP/Control

” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /

SMTP/Control ” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /

Experiments /Resu l t s /SSH/Control ”)

15 mutatedirs <− c (”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments

/Resu l t s /FTP/Mutator ” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /

Experiments /Resu l t s /HTTP/Mutator ” ,”C: / Users /smayer .CDN/Documents/GitHub/

Mayer Thesis /Experiments /Resu l t s /IMAP/Mutator ” ,”C: / Users /smayer .CDN/

Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /POP/Mutator ” ,”C: / Users /

smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /RTP/Mutator

” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /Resu l t s /

SMTP/Mutator ” ,”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /

Experiments /Resu l t s /SSH/Mutator ”)

16 p ro to co l <− c (”FTP” ,”HTTP” ,”IMAP” ,”POP” ,”RTP” ,”SMTP” ,”SSH”)

17 #RIPs o f sender used f o r each t r i a l . 1 : 1 mapping with p ro to co l vec to r

18

19 #Generic f i l ename format

20 avg s s t r <− ”AAA X Avgs . csv ”

21

22 updateFilename <− f unc t i on ( avg s s t r , d i r e c to ry , p ro to co l )

23 {

24 #Update f i l enames f o r the cur rent p ro to co l

25 avg s s t r <− sub ( ” ˆ [ [ : upper : ] ] { 3 , } ” , protoco l , a v g s s t r )

26
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27 i f ( g r ep l (” Control ” , d i r e c t o r y ) )

28 {

29 return ( avg s s t r <− sub (” X ” , ” C ” , a v g s s t r ) )

30 }

31 e l s e i f ( g r ep l (”Mutator ” , d i r e c t o r y ) )

32 {

33 return ( avg s s t r <− sub (” X ” , ” M ” , a vg s s t r ) )

34 }

35 e l s e

36 {

37 p r in t (” Error a s s i gn i ng output f i l e name . ” )

38 re turn (” Error in updateFilename ”)

39 }

40 }

41

42

43 t . t e s t . robust <− f unc t i on ( Control , Mutation , hyp , con f id ence ) {

44 obj<−t ry ( t . t e s t ( Control , Mutation , var . equal = hyp , conf . l e v e l = con f idence )

, s i l e n t=TRUE)

45 i f ( i s ( obj , ” try−e r r o r ”) ) re turn (”T t e s t e r r o r . I s your data e s s e n t i a l l y

constant ?”) e l s e re turn ( obj )

46 }

47

48

49 boxplot s <− f unc t i on (ExptData , p ro to co l )

50 {

51 p r i n t ( paste (” Creat ing boxp lot s f o r ” , protoco l , sep = ” ”) )

52 #Set output d i r e c t o r y

53 outputd i r <− ”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Latex/

Figures ”

54 #S l i d e s Dir

55 outputd i r <− ”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis / S l i d e s /”

56

57 #Generate box & whisker p l o t s f o r data

58 i f ( p ro to co l != ”RTP”)
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59 {

60 boxylatency <− ggp lot (ExptData , aes ( ExptData$control , ExptData$latency ) ) +

geom boxplot ( ) + geom point ( ) +labs (x = ”Experiment Type” , y = ”

Latency ( sec ) ”) + theme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) +

theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s .

t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =20) )

61 ggsave ( paste ( protoco l , ” l a t en cy . png ” , sep = ””) , boxylatency , path =

outputdir , he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

62

63 boxyRTT <− ggp lot (ExptData , aes ( ExptData$control , ExptData$RTT) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”RTT (

sec ) ”) + theme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) + theme (

text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s .

t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =20) )

64 ggsave ( paste ( protoco l , ” RTT. png” , sep = ””) , boxyRTT, path = outputdir ,

he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

65 }

66 e l s e

67 {

68 boxyMJ S <− ggp lot (ExptData , aes ( ExptData$control , ExptData$MaxjitterS ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”

Maximum J i t t e r ( s ec ) ”) + theme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”

none ”) + theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t

. x = e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) ,

ax i s . t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =20) )

69 ggsave ( paste ( protoco l , ” Max J i t t e r S . png ” , sep = ””) , boxyMJ S , path =

outputdir , he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

70

71 boxyJ S <− ggp lot (ExptData , aes ( ExptData$control , ExptData$j i t terS ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”Mean
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J i t t e r ( s ec ) ”) + th eme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) +

theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s .

t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =20) )

72 ggsave ( paste ( protoco l , ” J i t t e r S . png ” , sep = ””) , boxyJ S , path =

outputdir , he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

73

74 boxyMJ R <− ggp lot (ExptData , aes ( ExptData$control , ExptData$MaxjitterR ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”

Maximum J i t t e r ( s ec ) ”) + theme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”

none ”) + theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t

. x = e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) ,

ax i s . t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =20) )

75 ggsave ( paste ( protoco l , ” Max Jitter R . png ” , sep = ””) , boxyMJ R , path =

outputdir , he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

76

77 boxyJ R <− ggp lot (ExptData , aes ( ExptData$control , ExptData$j itterR ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”Mean

J i t t e r ( s ec ) ”) + th eme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) +

theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s .

t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =20) )

78 ggsave ( paste ( protoco l , ” J i t t e r R . png ” , sep = ””) , boxyJ R , path =

outputdir , he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

79 }

80

81 boxyduration <− ggp lot (ExptData , aes ( ExptData$control , ExptData$duration ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”

Duration ( sec ) ”) + th eme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) +

theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s . t i t l e .

x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y = e l ement text ( f a c e

207



=”bold ” , s i z e =20) )

82 ggsave ( paste ( protoco l , ” dura t i on . png ” , sep = ””) , boxyduration , path =

outputdir , he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

83

84 boxyBPS S <− ggp lot (ExptData , aes ( ExptData$control , ExptData$BPSSender ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”Sender

Throughput ( bps ) ”) + theme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) +

theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s . t i t l e .

x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y = e l ement text ( f a c e

=”bold ” , s i z e =20) )

85 ggsave ( paste ( protoco l , ” BPS S . png ” , sep = ””) , boxyBPS S , path = outputdir ,

he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

86

87 boxyBPS R <− ggp lot (ExptData , aes ( ExptData$control , ExptData$BPSReceiver ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”

Rece iver Throughput ( bps ) ”) + theme c l a s s i c ( ) + theme ( legend . p o s i t i o n =

”none ”) + theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t .

x = e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s .

t i t l e . x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y =

e l ement text ( f a c e=”bold ” , s i z e =20) )

88 ggsave ( paste ( protoco l , ” BPS R . png ” , sep = ””) , boxyBPS R , path = outputdir ,

he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

89

90 boxyPktS <− ggp lot (ExptData , aes ( ExptData$control , ExptData$PktsSender ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”Packets

Sent ”) + th eme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) + theme ( text

=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x = e l ement text (

s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s . t i t l e . x =

e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y = e l ement text ( f a c e=”

bold ” , s i z e =20) )

91 ggsave ( paste ( protoco l , ” PktsS . png ” , sep = ””) , boxyPktS , path = outputdir ,

he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

92
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93 boxyPktR <− ggp lot (ExptData , aes ( ExptData$control , ExptData$PktsReceiver ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”

Packets Received ”)+ th eme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) +

theme ( text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s . t i t l e .

x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y = e l ement text ( f a c e

=”bold ” , s i z e =20) )

94 ggsave ( paste ( protoco l , ” PktsR . png ” , sep = ””) , boxyPktR , path = outputdir ,

he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

95

96 boxyDrop <− ggp lot (ExptData , aes ( ExptData$control , ExptData$PktsDrop ) ) +

geom boxplot ( ) + geom point ( ) + labs (x = ”Experiment Type” , y = ”Dropped

Packets ”) + th eme c l a s s i c ( ) + theme ( legend . p o s i t i o n = ”none ”) + theme (

text=e l ement text ( fami ly = ”Century Gothic ”) , ax i s . t ex t . x =

e l ement text ( s i z e =18) , ax i s . t ex t . y = e l ement text ( s i z e =18) , ax i s . t i t l e .

x = e l ement text ( f a c e=”bold ” , s i z e =20) , ax i s . t i t l e . y = e l ement text ( f a c e

=”bold ” , s i z e =20) )

97 ggsave ( paste ( protoco l , ” Drop . png ” , sep = ””) , boxyDrop , path = outputdir ,

he ight = 5 . 5 , width = 4 . 7 , un i t s = ” in ”)

98

99 p r i n t ( paste (”Graphs c rea ted in : ” , outputdir , sep = ””) )

100 }

101

102 tTest s <− f unc t i on ( ControlData , MutationData , p ro to co l )

103 {

104

105

106 p r in t ( paste (” Conducting t−t e s t s f o r ” , protoco l , sep = ” ”) )

107 #Do t−t e s t s 99% con f idence l e v e l s f o r a l l met r i c s

108 #s ink ( paste (”C: / Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Experiments /

Resu l t s /” , protoco l , ”/” , protoco l , ” 99 T−Tests . txt ” , sep = ””) , append

= FALSE)

109

110 i f ( p ro to co l != ”RTP”)

111 {
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112 p r in t (” Latency ”)

113 p r in t ( t . t e s t . robust ( ControlData$latency , MutationData$latency , hyp = TRUE,

con f idence = 0 . 99 ) )

114 p r in t (”RTT”)

115 p r in t ( t . t e s t . robust (ControlData$RTT , MutationData$RTT , hyp = TRUE,

con f idence = 0 . 99 ) )

116 }

117 e l s e

118 {

119 #pr in t ( t . t e s t . robust ( ControlData$MaxjitterS , MutationData$MaxjitterS , hyp

= TRUE, con f idence = 0 . 99 ) )

120 #pr in t ( t . t e s t . robust ( Contro lData$ j i t t e rS , Mutat ionData$j i t terS , hyp = TRUE

, con f idence = 0 . 99 ) )

121 p r in t (”Max J i t t e r ”)

122 p r in t ( t . t e s t . robust ( ControlData$MaxjitterR , MutationData$MaxjitterR , hyp =

TRUE, con f idence = 0 . 99 ) )

123 p r in t (”Mean J i t t e r ”)

124 p r in t ( t . t e s t . robust ( Contro lData$j i t terR , MutationData$j itterR , hyp = TRUE,

con f idence = 0 . 99 ) )

125 }

126 p r i n t (” Duration ”)

127 p r i n t ( t . t e s t . robust ( ControlData$duration , MutationData$duration , hyp = TRUE,

con f idence = 0 . 99 ) )

128 p r i n t ( t . t e s t . robust ( ControlData$BPSSender , MutationData$BPSSender , hyp =

TRUE, con f idence = 0 . 99 ) )

129 p r i n t (”Throughput ”)

130 p r i n t ( t . t e s t . robust ( ControlData$BPSReceiver , MutationData$BPSReceiver , hyp =

TRUE, con f idence = 0 . 99 ) )

131 p r i n t (”Dropped Packets ”)

132 p r i n t ( t . t e s t . robust ( ControlData$PktsDrop , MutationData$PktsDrop , hyp = TRUE,

con f idence = 0 . 99 ) )

133 s ink ( )

134 }

135

136 histograms <− f unc t i on ( ControlData , MutationData , p ro to co l )
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137 {

138 p r in t ( paste (” Creat ing histograms f o r ” , protoco l , sep = ” ”) )

139 #Set output d i r e c t o r y

140 outputd i r <− ”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Latex/

Figures ”

141

142 i f ( p ro to co l != ”RTP”)

143 {

144 cLatency <− ggp lot ( ControlData , aes ( l a t ency ) ) + geom histogram ( b ins = 10)

+ theme ( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”

Latency ( sec ) ”) + ylab (” Frequency ”)

145 cRTT <− ggp lot ( ControlData , aes (RTT) ) + geom histogram ( b ins = 10) + theme (

ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”RTT ( sec ) ”) +

ylab (” Frequency ”)

146

147 mLatency <− ggp lot (MutationData , aes ( l a t ency ) ) + geom histogram ( b ins = 10)

+ theme ( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”

Latency ( sec ) ”) + ylab (” Frequency ”)

148 mRTT <− ggp lot (MutationData , aes (RTT) ) + geom histogram ( b ins = 10) + theme

( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”RTT ( sec ) ”)

+ ylab (” Frequency ”)

149 }

150 e l s e

151 {

152 c J i t t e r <− ggp lot ( ControlData , aes ( j i t t e rR ) ) + geom histogram ( b ins = 10) +

theme ( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (” J i t t e r

( s ec ) ”) + ylab (” Frequency ”)

153 mJitter <− ggp lot (MutationData , aes ( j i t t e rR ) ) + geom histogram ( b ins = 10)

+ theme ( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”

J i t t e r ( s ec ) ”) + ylab (” Frequency ”)

154 }

155

156 cBPSR <− ggp lot ( ControlData , aes ( BPSReceiver ) ) + geom histogram ( b ins = 10) +

theme ( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”

Throughput ( bps ) ”) + ylab (” Frequency ”)

211



157 cDrop <− ggp lot ( ControlData , aes ( PktsDrop ) ) + geom histogram ( b ins = 10) +

theme ( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”Dropped

Packets ”) + ylab (” Frequency ”)

158

159 mBPSR <− ggp lot (MutationData , aes ( BPSReceiver ) ) + geom histogram ( b ins = 10)

+ theme ( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”

Throughput ( bps ) ”) + ylab (” Frequency ”)

160 mDrop <− ggp lot (MutationData , aes ( PktsDrop ) ) + geom histogram ( b ins = 10) +

theme ( ax i s . t ex t . x = e l ement text ( ang le=70, v ju s t =0.5) ) + xlab (”Dropped

Packets ”) + ylab (” Frequency ”)

161

162 i f ( p ro to co l != (”RTP”) )

163 {

164 i f ( p ro to co l == ”HTTP”)

165 {

166 #Spec i a l case s i n c e HTTP drop graph isn ’ t d e s c r i p t i v e

167 cGrid <− p l o t g r i d ( cLatency , cRTT, cBPSR, l a b e l s = c (”” , ”” , ””) )

168 mGrid <− p l o t g r i d (mLatency , mRTT, mBPSR, l a b e l s = c (”” , ”” , ””) )

169 }

170 e l s e

171 {

172 cGrid <− p l o t g r i d ( cLatency , cRTT, cBPSR, cDrop , l a b e l s = c (”” , ”” , ”” ,

””) )

173 mGrid <− p l o t g r i d (mLatency , mRTT, mBPSR, mDrop , l a b e l s = c (”” , ”” , ”” ,

””) )

174 }

175 }

176 e l s e

177 {

178 cGrid <− p l o t g r i d ( c J i t t e r , cBPSR, cDrop , l a b e l s = c (”” , ”” , ”” , ””) )

179 mGrid <− p l o t g r i d ( mJitter , mBPSR, mDrop , l a b e l s = c (”” , ”” , ”” , ””) )

180 }

181 ggsave ( paste ( protoco l , ” C Hist . png ” , sep = ””) , cGrid , path = outputd i r )

182 ggsave ( paste ( protoco l , ” M Hist . png ” , sep = ””) , mGrid , path = outputd i r )

183 }
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184

185 pieCharts <− f unc t i on ( ControlData , MutationData , p ro to co l )

186 {

187 p r in t ( paste (” Creat ing p i e char t s f o r ” , protoco l , sep = ” ”) )

188 #Set output d i r e c t o r y

189 outputd i r <− ”C:/ Users /smayer .CDN/Documents/GitHub/Mayer Thesis /Latex/

Figures ”

190

191 QoSNames = c (” Retransmiss ion ” , ”Fast Retransmiss ion ” , ”Lost ACK” , ”Out o f

Order ” , ” Spur ious Retransmiss ion ” , ”Dupl i cate ACK” , ”Window Update ” , ”

Window Ful l ” , ”Data ”)

192

193 #Control

194

195 QoSDataC = c (

196 mean( ControlData$RetransS ) ,

197 mean( ControlData$FastRetransR ) ,

198 mean(ControlData$ACKlostR ) ,

199 mean(ControlData$OutOfOrderR ) ,

200 mean( ControlData$SRetransR ) ,

201 mean(ControlData$DupACKR) ,

202 mean(ControlData$WinUpdateR ) ,

203 mean( ControlData$WinFullR )

204 )

205

206 datapkts <− mean( ControlData$PktsReceiver )−sum(QoSDataC)

207

208 QoSDataC = c (QoSDataC , datapkts )

209

210 QoSdfC <− data . frame ( QoS Metric = QoSNames , c on t r o l = round (QoSDataC , 0) )

211

212 p r in t (QoSdfC)

213 p r in t (sum( QoSdfC$control ) )

214
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215 QoSbp <− ggp lot (QoSdfC , aes ( x=”Average Packet D i s t r i bu t i on ” , y=contro l , f i l l

=QoS Metric ) ) +

216 geom bar ( width = 1 , s t a t = ” i d e n t i t y ”) +

217 th eme c l a s s i c ( )

218 ggsave ( paste ( protoco l , ” C Pie . png ” , sep = ””) , QoSbp , path = outputd i r )

219

220

221 #Mutate

222

223 QoSDataM = c (

224 mean(MutationData$RetransS ) ,

225 mean(MutationData$FastRetransR ) ,

226 mean(MutationData$ACKlostR ) ,

227 mean(MutationData$OutOfOrderR ) ,

228 mean(MutationData$SRetransR ) ,

229 mean(MutationData$DupACKR) ,

230 mean(MutationData$WinUpdateR ) ,

231 mean(MutationData$WinFullR )

232 )

233

234 datapkts <− mean(MutationData$PktsReceiver )−sum(QoSDataM)

235

236 QoSDataM = c (QoSDataM, datapkts )

237

238 QoSdfM <− data . frame ( QoS Metric = QoSNames , mutator = QoSDataM)

239

240 p r in t (QoSdfM)

241 p r in t (sum(QoSdfM$mutator ) )

242

243 QoSbp <− ggp lot (QoSdfM , aes ( x=”Average Packet D i s t r i bu t i on ” , y=contro l , f i l l

=QoS Metric ) ) +

244 geom bar ( width = 1 , s t a t = ” i d e n t i t y ”) +

245 th eme c l a s s i c ( )

246 ggsave ( paste ( protoco l , ” M Pie . png ” , sep = ””) , QoSbp , path = outputd i r )

247
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248 QoSData <− QoSdfC

249 QoSData$mutator <− round (QoSdfM$mutator , 0)

250 p r in t (QoSData )

251

252 QoSData .m <− melt (QoSData , id . vars = ”QoS Metric ”)

253 p r in t (QoSData .m)

254

255 QoSChart <− ggp lot ( data=QoSData .m, aes ( x=QoS Metric , y=value ) )+

256 geom bar ( aes ( f i l l =va r i ab l e ) , p o s i t i o n = pos i t i on dodge ( ) , s t a t = ” i d e n t i t y

”) +

257 geom text ( aes ( l a b e l = value , group = va r i ab l e ) ,

258 s i z e = 3 , ang le = 0 , p o s i t i o n = pos i t i on dodge ( width=0.9) ) +

259 theme ( ax i s . t ex t . x = e l ement text ( ang le = 90 , h ju s t = 1) ) +

260 c o o r d f l i p ( ) +

261 theme ( legend . p o s i t i o n=”bottom”)

262

263 ggsave ( paste ( protoco l , ” Drop . png ” , sep = ””) , QoSChart , path = outputd i r )

264 }

265

266

267 proc e s sPro to co l <− f unc t i on ( c t l d i r , mutate dir , f i l ename , p ro to co l )

268 {

269 p r in t ( p ro to co l )

270

271 #Import & prepare Data ( expect s . csv s to r ed in UTF−8)

272 #F i l e i s d i f f e r e n t from f i l ename so that i t can su rv iv e being regexe ’ d

273 p r in t ( c t l d i r )

274 f i l e <− updateFilename ( f i l ename , c t l d i r , p r o to co l )

275 ControlData <− a s t i b b l e ( read . csv ( f i l e=paste ( c t l d i r , ”/” , f i l e , sep = ””) ,

header=TRUE, sep = ’ , ’ , f i l eEncod ing = ”UTF−8”) )

276 p r in t ( mutate d i r )

277 f i l e <− updateFilename ( f i l ename , mutate dir , p r o to co l )

278 MutationData <− a s t i b b l e ( read . csv ( f i l e=paste ( mutate dir , ”/” , f i l e , sep =

””) , header=TRUE, sep = ’ , ’ , f i l eEncod ing = ”UTF−8”) )

279 p r in t (”Data read from f i l e s . ” )
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280

281 #Print & de s c r i b e data

282 p r in t ( ControlData )

283 p r in t (MutationData )

284

285 Contro lStat s <− de s c r i b e ( ControlData )

286 MutationStats <− de s c r i b e (MutationData )

287

288 ControlData <− add column ( ControlData , c on t r o l = TRUE)

289 MutationData <− add column (MutationData , c on t r o l = FALSE)

290 ExptData <− rbind ( ControlData , MutationData )

291 bool <− f a c t o r ( ExptData$control==1, l a b e l s = c (”Mutator ” ,” Control ”) )

292 p r in t ( bool )

293 ExptData$control <− bool

294 p r in t (ExptData )

295

296 myPlots <− boxplots (ExptData , p ro to co l )

297 #tTest s ( ControlData , MutationData , p ro to co l )

298 #histograms ( ControlData , MutationData , p ro to co l )

299 #pieCharts ( ControlData , MutationData , p ro to co l )

300 }

301

302 f o r ( j in c ( 2 : 7 ) )

303 {

304 proc e s sPro to co l ( c t l d i r = c t r l d i r s [ j ] , mutate d i r = mutatedirs [ j ] , f i l ename

= avgs s t r , p r o to co l = pro to co l [ j ] )

305 }
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Appendix E. Network Wiring Diagram

This appendix includes the physical connections between the SDN switch and two servers

used to conduct experiments. The rack diagram used an IBM switch due to a lack of

available Pica rack diagrams. On the real Pica switch, the numbering for ports is flipped

(i.e., top row ports are even and bottom row ports are odd). For this thesis, the dotted red

line on Port 2 of Aberdeen 1 indicates an inactive interface. The HP switch on port 1 of

Aberdeen 1 did not play a role in this thesis.
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